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Não-hexagonais

Dissertação de Mestrado apresentada ao Pro-

grama de Pós-Graduação em F́ısica da Universi-
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Abstract

Carbon is one of the most abundant elements in nature. The different hybridizations al-

lowed for carbon enable it to form distinct materials with a variety of dimensions, which is a

feature strongly related to the electronic properties of the carbon materials. Since the proper-

ties of these carbon-based materials are directly related to their atomic structures, it is needed

a deep understanding of the relationship between these two features. Therefore, such electronic

features has motivated the investigation of many two-dimensional materials (beyond graphene,

which is a zero gap semiconductor), such as graphenylene, phagraphene, haecklites, and others.

Therefore, considering the idea of sp2 carbon systems with a structural unit different from that

of graphene, such as graphenylene, we propose in this work a hypothetical 2D-system where

the structural unit is a naphthyl group. According to the way these naphthyl units are ar-

ranged in the structure, we can build two different 2D-networks. We named the first one as

naphthylene-α, and the second one as naphthylene-β. Besides performing calculations on these

two-dimensional systems, we also proposed and investigated the electronic properties of differ-

ent families of nanoribbons that can be constructed from these 2D-systems. All calculations

were performed using Density Functional Theory as implemented in the SIESTA code. Our

study shows that most of the investigated systems present a metallic behavior, and the states

close to the Fermi level are not edge states as in graphene nanoribbons, but rather they are

distributed over the internal regions of the structures.

Key-words: Electronic structure, density functional theory, naphthylene, non-hexagonal rings.



Resumo

O carbono é um dos elementos mais abundantes na natureza. As diferentes hibridizações

posśıveis para o carbono permitem que ele forme materiais distintos com uma variedade de

dimensões, o que é uma caracteŕıstica fortemente relacionada às propriedades eletrônicas do

átomo de carbono. Como as propriedades desses materiais à base de carbono estão diretamente

relacionadas às suas estruturas atômicas, é necessário um profundo entendimento da relação

entre essas duas caracteŕısticas. Portanto, isso tem motivado a investigação de muitos materiais

bidimensionais (além do grafeno, que é um semicondutor de gap zero), tais como grapheny-

lene, phagraphene, haecklites, etc. Logo, considerando a idéia de sistemas de carbono com

hibridização sp2 e com uma unidade estrutural diferente da do grafeno, como o graphenylene

por exemplo, propomos neste trabalho investigar um sistema bidimensional onde a unidade

estrutural é um grupo naftil. De acordo com o modo como estas unidades de naftil estão dis-

postas na estrutura, podemos ter duas redes 2D diferentes. Nomeamos o primeiro sistema como

naphthylene-α, e o segundo como naphthylene-β. Além de estudarmos esses sistemas bidimen-

sionais, também investigamos as propriedades eletrônicas de diferentes famı́lias de nanofitas

que podem ser constrúıdas a partir desses sistemas 2D. Todos os cálculos foram realizados

utilizando a Teoria do Funcional da Densidade por meio do código SIESTA. Nossos estudos

mostram que a maioria dos sistemas investigados apresenta um comportamento metálico, e os

estados próximos ao ńıvel de Fermi não são estados de borda como nas nanofitas de grafeno,

mas são distribúıdos ao longo de toda a estrutura.

Palavras-chave: Estrutura eletrônica, teoria do funcional da densidade, naftileno, anéies não-

hexagonais.
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Chapter 1

Literature Review

In this chapter, we present a literature review on graphene, graphene synthesis and some

of the potential applications of this material. In addition, we discuss general features of other

carbon allotropes that are relevant for our investigation. We also revise basic properties of

graphene nanoribbons and other different two-dimensional nanocarbon systems, and how they

motivated our work.

1.1 Carbon Based Materials

Carbon is one of the most abundant elements in nature. The different hybridizations allowed

for carbon enable it to form distinct materials with a variety of dimensions, which is a feature

strongly related to the electronic properties of the carbon atom [1].

A carbon atom has 6 electrons, which present the following electronic distribution 1s2 2s2

2p2. Electrons from 1s orbital are strongly bounded to the nucleus, and because of that, they

are known as core electrons. The other four electrons are the valence electrons and they occupy

the 2s, 2px, 2py and 2pz orbitals. The wavefunction of these four electrons can superpose each

other easily once the energy difference between the 2s and 2p orbitals is small when compared

to the binding energy [2]. This process of mixing wavefunctions is called hybridization. The

combination of s and p orbitals can form three different hybrid orbitals, which are sp, sp2 and

sp3. Firstly, when the hybridization occurs between a s and only one p orbital, it results in sp

orbitals. As a consequence, the carbon atoms form two σ and two π bonds with the neighbors

atoms. This kind of hybrid orbitals forms linear chains [2].

Regarding the sp2 hybridization, it is a combination of one s orbital and two p orbitals,

resulting in three in-plane hybrid orbitals, and consequently, planar structures are formed [2].

The three sp2 hybridized orbitals make a 120◦ degree angle with each other. Graphene, for

14



1.1 Carbon Based Materials 15

example, presents sp2 hybridization. Each atom is bounded to three other atoms forming σ

bonds, and the out-of-plane p orbitals, which is not hybridized, form a π bond with the others

out-of-plane p orbitals.

Lastly, sp3 hybridization happens when a s orbital is combined with all three p orbitals,

forming four σ bonds. In this mixing, the sp3 orbitals make a 109◦28’ angle with each neighbor

orbital. The hybrid sp3 orbitals give rise to tethahedral structures [2], such as diamond and

methane, for example.

Moreover, the absence of p orbitals in the core of carbon allows it to form more compact

structures and with different structural arrangements. Figure 1.1 shows the structural repre-

sentation of some allotropes of carbon, which have different hybridizations.

a) b)

c) d)

Fig. 1.1: Schematic representation of a) graphene, b) graphite, c) carbon nanotube, and d)
fullerene, which are different allotropes of carbon.

In Fig. 1.1a we have the representation of graphene, a two-dimensional structure where the

atoms are organized in a honeycomb lattice and have sp2 hybridization. Figure 1.1b shows the

structure of graphite, which is formed by the pilling of layers of graphene that hold together

due to van der Waals interactions. Those interactions are much weaker than the π and σ bonds

inside a graphene sheet. Figure 1.1c is a representation of a single-wall carbon nanotube, a

cylindrical structure of carbon atoms that can be pictured as a graphene sheet rolled up so as

to form a tube. The discover of carbon nanotubes is often attributed to Iijima due to his paper

published in 1991 [3]. However, in 1959, Roger Bacon produced images of carbon nanotubes,

and in the 1980s, Howard Tennant applied for a patent on a method to produce this carbon-

based material [4]. However, Iijima was the one who not only imaged carbon nanotubes in

electron microscope but also explained what these structures really are, sheding light on the

nanotube science [4]. Lastly, Fig. 1.1d displays a fullerene (C60), structure also called buckyball,
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which was discovered in 1985 [5, 6], but which has been predicted before, in 1970, by Ozawa

[7, 8]. Fullerenes consist of hexagons and pentagons, what causes the formation of a spherical

structure. Among those carbon allotropes, we will focus our attention on graphene and its

physical properties.

1.2 Graphene

Graphene is a two-dimensional crystaline structure which was isolated in its few layered

form in 2004 by Geim and Novoselov using the so-called mechanical exfoliation method [9, 10].

Their pioneering experiments regarding this 2D material rewarded them with the Nobel Prize

in Physics in 2010. This material presents interesting and peculiar properties, such as high

electronic mobility at room temperature [11], high flexibility [12], impermeability to gases [13],

high electrical and thermal conductivity [14], among others [10]. All these properties together in

a single material suggest that graphene has potential applications in areas related to composites,

energy, electronics, environment and thin films, to quote a few [6]. Therefore, it has become

a hot topic of interest for science and technology [9, 15]. In the following, we will discuss

the structural and electronic properties of graphene, graphene synthesis and other potential

graphene-based materials.

1.2.1 Structural Properties

Graphene is a one-atom thick two-dimensional allotrope of carbon. Its composing atoms

are organized in a honeycomb lattice, thus forming hexagonal rings, as illustrated in Fig. 1.2.

A B

acc

a
2

a1

δ δ

δ

1 2

3

.
.
.
.
.

..........

.
.
.
.
.

Fig. 1.2: Direct lattice of graphene.
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The atomic structure of graphene can also be seen as a superposition of two triangular

lattices, which we name as A and B sublattices. Differently from graphene, these two sublattices

are now, separately, Bravais lattices. The acc parameter is the carbon-carbon bond length,

which is about 0.142nm. The δi (i = 1, 2, 3) vectors point to the three nearest neighbors of a

carbon atom, and ~a1 and ~a2 are the primitive lattice vectors, which can be written as

~a1 =
acc

2
(3,

√
3), (1.1)

and

~a2 =
acc

2
(3,−

√
3). (1.2)

The corresponding reciprocal lattice, displayed in Fig. 1.3, is also a hexagonal lattice, how-

ever it is rotated by 30◦ relative to the direct lattice showed in Fig. 1.2.

Fig. 1.3: Reciprocal lattice of graphene and its 1st Brillouin zone highlighted as gray.

The area in gray corresponds to the first Brillouin zone (BZ), which is the Wigner-Seitz cell

of the reciprocal lattice. The Γ, K and M labels hold for the high symmetry points, where K

and K ′ are also called the Dirac points. They can be written as follows

Γ =
2π

3a
(0, 0), (1.3)

M =
2π

3a
(1, 0) (1.4)

and

K =
2π

3a
(1,

1√
3
). (1.5)

The reciprocal lattice has an important role in solid state physics, since the energy bands
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are expressed as a function of the k points within the BZ. In addition, the interpretation and

computation of many physical quantities require only the integration over the entire BZ [16]. In

those integrations, one can use some properties, such as symmetry operations, so as to reduce

the cost of computational calculations. This is why energy bands are usually expressed along

the high symmetry points, which are the points on the boundary that define the irreducible

Brillouin zone (IBZ). The IBZ is the smallest region of the BZ that is sufficient to express all

the information on the excitations of the crystal [16]. The primitive vectors ~b1 and ~b2 of the

reciprocal lattice can be written as follows

~b1 =
2π

3acc
(1,

√
3), (1.6)

~b1 =
2π

3acc
(1,−

√
3). (1.7)

Considering these vectors, it is possible to find the coordinates of the Γ, K and M points

as showed in Equations 1.3, 1.4 and 1.5. If the BZ was not a regular polygon, we would have

to do some calculations to find the coordinates of the high symmetry points.

1.2.2 Electronic Properties

Electronic structure (ES) theory describes how the electrons behave in a material, as well as

it allows for the calculation of atomic forces, as a combination of interactions involving electrons

and nuclei. These features determine the geometry and other physical properties of several sta-

ble structures. In short, ES deals with the ground and also excited states for electrons, their

relation to the nuclear structure, and the spectroscopies connecting them [17]. The electronic

structure of graphene and other nanomaterials can be understood as a relation between the

energy and the wave vector in reciprocal space, which is usually called a dispersion relation.

Figure 1.4 displays the electronic band structure of graphene over the whole Brillouin zone and

along the high symmetry lines, respectively.



1.2 Graphene 19

-4

-2

0

2

4

E
-E

f
(e

V
)

Γ K M Γ

M

K

Γ

                                                                     

a) b)

Fig. 1.4: a) Electronic band structure over the whole BZ (adapted from [18]) and b) along the
high symmetry direction in the first Brillouin zone.

As mentioned before, graphene has sp2 hybridization, what means that three of the valence

electrons form σ bonds (in-plane) and the remaining one forms a single π bond (out of the

plane). Since the latter one forms a weaker bond, it is responsible for most of the electronic

properties around the Fermi level [18]. The points where the valence and conduction bands

touch each other are called Dirac points. For this reason, graphene is known as a zero gap

semiconductor. These points are located at the vertices of the BZ (K and K’ points). Due to

the linear dispersion at these points, electrons in graphene behave as massless particles and obey

Dirac equation [19]. Therefore, electrons in graphene have a high mobility (200.000 cm2/V.s)

[20], which is 100 faster than in silicon (1400 cm2/V.s), for example.

Even though graphene features all these interesting properties, it is still a zero gap semi-

conductor. In gapless materials, it is not possible to control the behavior of electrons, what is a

required feature in nanoelectronic applications. Therefore, many strategies have been proposed

to open a tunable band gap in this material. For instance, we can mention the introduction

of structural defects [21], chemical doping [22] and the reduction of dimensionality, such as in

graphene nanoribbons [23] (which are one-dimensional graphene nanostrips). Another mecha-

nism that has been investigated by the scientific community is the reorganization of atoms so

as to form materials still made of carbon atoms, but not arranged in a honeycomb lattice. For

example, graphenylene, which is a sp2-carbon structure composed of cyclohexatriene units with

two quite distinct C–C bonds within a C6 ring [24], is a 2D lattice presenting a tiny electronic

band gap.

1.2.3 Graphene Synthesis

Even though graphene was isolated by mechanical exfoliation, there are other different tech-

niques able to produce this 2D material. Chemical Vapor Deposition-CVD [25] and epitaxial



1.2 Graphene 20

growth [26] are representative examples. However, in order to introduce this material in in-

dustry, it is needed a large-scale production route which not only maintains all those peculiar

properties of graphene, but also solves some issues related to it, such as the zero gap feature.

Several methods to fabricate graphene have been reported and they can be divided into two

different approaches: top-down and bottom-up, as illustrated in Fig. 1.5 below.

Fig. 1.5: Schematic representation of bottom-up and top-down approaches. Adapted from [27].

An example of a Top-down approach is the separation of the graphite layers, thus yielding

single graphene sheets [28]. The basic idea of a top-down technique is starting from a larger

bulk structure in a way to obtain a smaller system. By using this approach, one can have

high control of placement and location of the produced material. However, there are also dis-

advantages, such as the damage of the layers while separating them, finite source of graphite,

possibility of reagglomeration of the layers during the exfoliation process and also it takes nu-

merous steps to go from graphite to graphene layers. Some methods that use this approach

are: micromechanical cleavage, electrochemical exfoliation, exfoliation of graphite by interca-

lating compounds, solvent-based exfoliation and unzipping of carbon nanotubes [28]. Fig. 1.6

shows images of carbon nanoparticles, carbon nanoribbons and graphene sheets produced by

electrochemical exfoliation, for example [29, 30].

Fig. 1.6: (a) Transmission electron microscopy (TEM) image of carbon nanoparticles, (b)
carbon nanoribbons and (c) graphene sheets produced by electrochemical exfoliation [29, 30].
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On the other hand, for bottom-up approaches, they promote high levels of graphitisation,

thus producing good materials, what usually requires high temperatures [28]. The basic idea

is starting form atoms or molecules in a way to obtain a larger system. Bottom-up methods

present high control of resolution [31], and they are usually simpler than top-down methods.

Bottom-up techniques enable the production of graphene nanoribbons and nanoflakes since

one of the biggest advantage of these techniques is the control of resolution, what guarantees

precision at the atomic-level [31]. Some bottom-up methods are, for example, epitaxial growth

on silicon carbide, chemical vapor deposition (growth on metal, substrate free), surface assisted

reactions and miscellaneous methods [28]. As an example of one of these techniques, Fig. 1.7

displays images of graphene films grown by CVD.

Fig. 1.7: a) Scanning electron microscopy(SEM) images of grown graphene films on thin (300-
nm) nickel layers and thick (1-mm) Ni foils (inset). b) TEM images of graphene films of different
thicknesses [32].

As far as it is known, all methods reported to produce graphene have advantages and

disadvantages. Therefore, the final choice has to be conducted by the final application of this

material [28].

1.2.4 Potentialities for Graphene-based Materials

Graphene and its related systems are versatile materials, as a consequence of their inter-

esting optical, mechanical and electrical properties. As a result, their use has been considered

and studied in many areas. Due to its transparency and flexibility, for example, graphene has

become a potential material for electrodes. Touch-screen sensors [12], organic light-emitting

diodes [33], and organic photovoltaic devices [34] are some examples of flexible devices using

graphene as a transparent electrode. However, integrating graphene-based transparent elec-

trodes into comercial devices in large-scale production, with low-cost and good quality, is still
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a challenge [35].

Another area that graphene has gained some attention is on energy storage. A device that

could posses both high energy and high power would be a very good option to enhance some

issues related to electrochemical capacitors and batteries, for example [35]. Once graphene

presents a high surface area and high electrical conductivity, it has become a very attractive

material to this end [36]. However, probably it is too early to say when and whether or not

graphene will replace traditional materials in batteries and capacitors, since many challenges

still have to be overcome, such as thickness, uniformity, particle sizes, purity and surface area

[35].

Graphene has also attracted great attention in the semiconductor field as silicon-based de-

vices approach their limit of miniaturization and improvements of performance [37]. However,

instead of replacing silicon completely, graphene is more likely to be used to improve silicon-

based electronics [37].

Graphene-based sensors have been another topic of intense research [10]. Since graphene

is, at the same time, a sensing and conducting surface, it can exhibit a very high sensitivity

[35]. In traditional sensors, these two features are separated [38]. Related to medical topics,

graphene has also been considered as a candidate to the production of artificial implants and

tissue components, such as orthopedic implants [39]. It is important to stress that even though

there is intense research in the area, biomedical applications of graphene are in early stages of

development [35]. The future of graphene-based materials and their applications is difficult to

predict, but it is likely they will have a very important role in different areas.

Considering the possibility to open a band gap in graphene, other systems are proposed to

investigate how their electronical properties behave. Therefore, the two next sections are about

graphene nanoribbons and unusual two-dimensional graphene-like materials, respectively.

1.3 Graphene Nanoribbons

In order to open a band gap in graphene, an alternative is to work with one dimensional pe-

riodic nanostrips of graphene, which are commonly called graphene nanoribbons. One can “cut”

graphene nanoribbons along two high-symmetric directions in graphene, as shown in Fig. 1.8,

consequently producing graphene nanoribbons with zigzag and armchair edges. Even though

we are going to focus on these two types of nanoribbons, there are also graphene nanorib-

bons with chiral edge orientation, what means that zigzag and armchair segments alternate

periodically along the edges [40].
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Fig. 1.8: Directions of high symmetry in graphene.

The atomic structure of zigzag and armchair graphene nanoribbons are represented in

Fig. 1.9. The zigzag nanoribbons are classified according to the number of zigzag chains across

the ribbon width and the armchair nanoribbons according to the number of dimer lines across

the ribbon width. Usually, graphene nanoribbons have edges saturated by hydrogen atoms. In

Fig. 1.9 we show a 10-ZGNR and a 10-AGNR, respectively.
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Fig. 1.9: Atomic structure of a) zigzag and b) armchair graphene nanoribbons. The boxes in
red highlight the unit cell of each nanoribbon.

The electronic band structure of zigzag and armchair graphene nanoribbons are quite dif-

ferent [15]. The electronic levels also depend on other features, such as the width and the spin

polarization of their edges. In Fig. 1.10 we have the electronic band structure of a 10-ZGNR

(zigzag graphene nanoribbon with 10 zigzag chains across the ribbon width) and of a 10-AGNR

(10 dimer lines across the ribbon width), respectively, obtained by performing calculations using

the same methodology described in chapter 2.
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Fig. 1.10: Atomic structure of a) zigzag graphene nanoribbon and b) armchair graphene
nanoribbon along with their electronic band structures. The boxes in red highlight the unit
cell.

The band structures of these two types of nanoribbons are very distinct. For the zigzag

nanoribbon, there is a flat band at the Fermi level, and this metallic behavior does not depend

on the ribbon width [41, 42]. Therefore, ZGNRs always show localized states at the Fermi level

when we do not take spin polarization explicitly into account. This suggests a magnetic ordering

[15]. As discussed by Pisani et al in [41], there is an instability associated to this high density

of states at the Fermi level. In order to solve this instability, the system spontaneously shows

spin polarization along the edges, since other alternatives such as geometric distortion do not

show preferable to stabilize the system successfully [41]. In the same work, it is investigated

two types of spin polarization. The antiferromagnetic (AFM) configuration, where the spin

moments on the atoms on one edge are antialigned to the spin moments on the opposite edge,

and the ferromagnetic (FM) configuration, where the spin moments on both edges have the

same orientation [41]. Figure 1.11 shows the electronic band structure of a 10-ZGNR with

AFM and FM spin orientations, respectively. These bands also were obtained by means of the

methods described in the following chapter.
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Fig. 1.11: Electronic band structure of zigzag graphene nanoribbon a) with AFM orientation
and b) FM orientation.

As we can see, the AFM configuration shows a band gap around the Fermi energy, while

in the FM configuration, the nanoribbon shows a metallic behavior. The blue (red) bands

represent spin up (down) electronic states. In addition, the AFM configuration is more stable

than the non polarized and the FM configuration [1].

Armchair graphene nanoribbons are predicted to be either semiconductor or metallic. These

two features depend directly on the nanoribbon width [15]. AGNRs can be divided into 3

different families: those with 3p, 3p + 1 and 3p + 2 rows of dimers across their width [23],

where p is a positive integer. These families of ribbons and the variation in their band gap as

a function of the ribbon width are displayed in Fig. 1.12.

Fig. 1.12: Variation of the band gaps os AGNRs as a function of the ribbon width (Wa).
Adapted from [42].
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For these 3 families of armchair nanoribbons, we can state that ∆3p+1 ≥ ∆3p ≥ ∆3p+2 and

for each of these families, the band gap decreases with increasing ribbon width [42].

1.4 Two-dimensional Carbon Networks

The lack of band gap in graphene has motivated the investigation of many two-dimensional

materials [43], such as graphenylene [24, 44], phagraphene [45], amorphized graphene [46],

biphenylene [47], Haecklites [48, 49] etc. Since the atomic structures of these materials are

directly related to their physical properties, it is needed a deep understanding of the relationship

between these two features. Fig. 1.13 shows, for example, the atomic structure of biphenylene,

amorphous graphene and phagraphene, respectively.

Fig. 1.13: Atomic structure of biphenylene, amorphous graphene and phagraphene. Adapted
from [43].

As we can see, like graphene, these networks are still two-dimensional, but the arrangements

of their atoms are different from a honeycomb lattice. Among this variety of graphene-like sys-

tems, we will focus our attention on graphenylene, which motivated this dissertation.

Graphenylene, firstly proposed by Balaban and Vollhardt [24], is a hypothetical two dimen-

sional sp2-carbon structure constituted by 4, 6 and 12-membered rings in a triangular lattice,

as in graphene. However, the lattice parameters of graphenylene are a=b=6.76 Å, and its unit

cell contains 12 sp2-hybridized carbon atoms. The Brillouin zone of this material is similar to

that of graphene, namely a regular hexagon. Figures 1.14a and 1.14b represent the atomic

structure and the electronic band structure of graphenylene, respectively.
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Fig. 1.14: a) Atomic structure of graphenylene along with b) its electronic band structure [24].

First-principles calculations on this network predict a narrow direct band gap (0.025 eV) [24].

Even though energetically less favourable than graphite and diamond, for example, grapheny-

lene is thermodynamically more stable than graphyne and carbyne [24]. In addition, its phonon

dispersion curves showed that there are no imaginary frequencies [24]. All these results indicate

that graphenylene is a sp2-hybridized carbon allotrope able to exist in reality [24]. These struc-

tures can also be thought as cut into nanoribbons. Figure 1.15 displays the electronic band

structures of two types of graphenylene nanoribbons proposed by Qi Song et al [24], which also

exhibit a direct band gap around the Fermi level, but much larger than that of graphenylene.

Fig. 1.15: c) electronic band structure of ghaphenylene nanoribbon with zigzag edge and d)
armchair edge, respectively. Adapted from [24].

One potential application of graphenylene is on the separation of H2 molecule from other

gases, such as CO [24]. This is due to the fact that the pore diameter (3.2 Å) is larger than H2

molecules, thus enabling a separation from molecules larger than the pore diameter (like the

case of CO) [50].
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1.5 This Work

Considering the idea of sp2-carbon systems with a structural unit different from that of

graphene, such as graphenylene, we propose in this work a new 2D-system where the structural

unit is a naphthyl group, which is shown in Fig 1.16b. According to the way these naphthyl

units are arranged in the structure, we can have two different 2D networks. We named the

first one as naphthylene-α, and the second one as naphthylene-β. The way the naphthyl units

are arranged in naphthylene-α structure is similar to the cyclic 3-naphthylene presented by

Balaban and Vollhardt in [51].

(b)

(c) (d)

(a)

Fig. 1.16: Basic building block of a) graphenylene and b) naphthylene-α and naphthylene-β
systems, c) naphthylene-α sheet, d) naphthylene-β sheet.

We also investigated, by means of computational methods, the electronic properties of

possible nanoribbons that can be constructed from these 2D-systems. A way to construct

precise nanoribbons of different topologies and widths, for instance, is to use surface-assisted

reactions [52]. Cai et al [52], for example, show that using different molecules, 10,10’-dibromo-

9,9’-bianthryl and 6,11-dibromo-1,2,3,4-tetraphenyltriphenylene, in a surface-assisted reaction

generates straight armchair edged or wigglelike ribbon, respectively [53].

In the next chapter, the methodology used to perform the calculations of the electronic

structure of the proposed systems is presented and discussed. In chapter 3, we show the atomic

structure of all systems studied and the results obtained regarding their electronic properties.

Lastly, in chapter 4, we present the conclusions that arised from this work.



Chapter 2

Methods

In this chapter we present and discuss the methods and approximations used to compute

the electronic structure for the systems studied in this work.

2.1 Schrödinger Equation

In order to describe the electronic structure of matter, we have to rely on theoretical con-

cepts and methods of quantum mechanics. Therefore, we can start with the time-independent

Schrödinger equation, which governs a non-relativistic quantum system. It is written as

Eψ = Ĥψ, (2.1)

where Ĥ is the Hamiltonian, E represents the energy eigenvalues and ψ are the eigenfunctions

of the system.

The Hamiltonian Ĥ for a system that consists of nuclei (upper case subscripts) and electrons

(lower case subscripts) can be written (in atomic units) as

Ĥ = −1

2

∑

i

∇2
i −

∑

i,I

ZI

|ri −RI |
+
∑

i 6=j

1

|ri − rj|
−

∑

I

1

2MI

∇2
I +

∑

i 6=j

ZiZj

|RI −RJ |
, (2.2)

or summarized as

Ĥ = T̂e + V̂e−n + V̂e−e + T̂n + V̂n−n, (2.3)

where T̂e and T̂n are the kinetic energy operators for electrons and nuclei, respectively, V̂e−n

represents the potential energy between electrons and nuclei, V̂e−e is the potential energy from

29
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electron-electron repulsions, and V̂n−n denotes the potential energy from nuclei-nuclei repul-

sions. The electron-electron interaction, expressed by V̂e−e, is a very difficult term to deal with,

reason for what the analytical solution to a many-body system is not known. Therefore, the

main problem of electronic structure is to develop mechanisms to approach electronic correla-

tions, enabling one to predict and study the different phenomena displayed by matter at the

nanoscale.

Another issue, when solving the many body problem for molecular systems, is the coupling

between the electronic and nuclear parts of the problem. A first approximation to work with

this difficulty is to assume that the Schrödinger equation can be solved separately for electrons

and nuclei. This simplification is provided by the Born-Oppenheimer approximation [54], which

is discussed in the next section.

2.2 Born–Oppenheimer (BO) Approximation

Considering the Hamiltonian Ĥ for the Schrödinger equation (Eq. 2.2), we will not be able

to find the analytical solution. The term V̂e−n involves electrons and nuclei, what makes Eq. 2.2

a non-separable equation. Aiming to decouple the electronic motion from the nuclear motion,

we introduce the Born-Oppenheimer approximation [54], which finds physical reason in the

fact that the nuclei are very heavy in comparison to the electrons. For this reason, the nuclei

behave as if they were nearly fixed with respect to the electronic motion. The final consequence

is that the motion of electrons and nuclei can be solved separately. It can be shown that this

separation yields wavefunctions that can be expressed as a product of two functions, that is

Ψ(ri,RI) = ψR(ri).X (RI), (2.4)

where ψR(ri) is the electronic wavefunction, which also depends on nuclear positions, and X
(RI) is the nuclear wavefunction.

It can be shown that ψR(r) satisfies the following Schrödinger equation

[T̂e + V̂e−n + V̂e−e]ψR(ri) = U(RI)ψR(ri), (2.5)

which describes only the electronic part of the system. Commonly, the Ĥe = T̂e + V̂e−n + V̂e−e

operator is called electronic Hamiltonian. For each nuclear configuration, U(RI) is part of a

set of eigenvalues for different electronic states.

Considering Eq. 2.1, Eq. 2.4 and Eq. 2.5, we obtain the equation for the nuclear part of

the problem as
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(−
∑

I

~
2

2MI

∇2
I + U(RI))Ψ(ri,RI) = EΨ(ri,RI). (2.6)

Rewriting Eq. 2.6 above, we have

(−
∑

I

~
2

2MI

∇2
I + U(RI))X (RI) = EX (RI), (2.7)

describing, thus, the nuclei motion separated from the electronic motion. In the following,

the search for electronic molecular orbitals is done considering different methods. In ab initio

molecular dynamics, the nuclear problem is usually replaced by an integration of Newton’s

equations, considering the electronic energy as part of an effective potential [55]. Even using

the Born-Oppenheimer approximation, the Schrödinger equation can only be solved exactly for

one-electron systems. In order to apply it to a system of many electrons, one must evaluate the

difficulties and try to reach at least approximated solutions, as discussed in the next sections.

2.3 Investigation of Many-electron Systems

Aiming to solve the electronic Schrödinger equation that was elaborated after using the

Born-Oppenheimer approximation, different methods have been developed. The first consider-

ation about the many electron problem is that the electrons are interacting particles. Thus, a

first approximation that can be made made is to consider that electrons are independent par-

ticles in an effective potential. Therefore, one possibility is to consider that the wavefunction

of the system can be written as a product of one-electron orbitals,

Ψ(x1,x2, ...,xn) = φ1(x1)φ2(x2)...φn(xn). (2.8)

This approach, proposed by Hartree in 1928, considers that the potential felt by an electron

was due to the field created by the cloud of the remaining electrons together with the potential

of the nuclei, and a two-body interaction assumes the classical electrostatic form [55].

In general, theories of non-interacting particles have an effective potential that takes into

account some effects of the real interaction. This is cast in the following Schrödinger like

equation,

Ĥ i
effΨi(r) =

[

− ~
2

2me

∇2 + V σ
eff (r)

]

Ψσ
i (r). (2.9)

In this case, the effective potential V σ
eff (r) acting on each electron of spin σ at r and can be
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expressed as

V σ
eff = Vext(r) + VHartree(r). (2.10)

The second term in Eq. 2.10 is the classical electrostatic potential felt by a particle due to the

electronic density from all the other electrons, also called Hartree potential.

Electrons are indistinguishable fermions, what means that when two electrons are ex-

changed, the wavefunction must change sign, i.e., it has to be antisymmetric (condition not

satisfied by Eq. 2.8). Once the Hartree approach does not include this property, the description

of the electronic problem asks for a more complete procedure.

Therefore, the next step is to take into account the antisymmetry of the wavefunction. In

order to account for this aspect, it was proposed an approximation for the antisymmetrized

many electron wavefunction in the form of a Slater determinant [56], as shown below

Ψ(x1,x2, ...,xn) =
1√
N !













φ1(x1) φ1(x2) . . . φ1(xn)

φ2(x1) φ2(x2) . . . φ2(xn)
...

...
. . .

...

φn(x1) φn(x2) . . . φn(xn)













where φi(x1) represents the ith one-electron spin orbital (spatial and spin component), and (j)

refers to the spatial and spin coordinate of electron j. This procedure results in the so called

Hartre-Fock (HF) approximation, and it introduces the concept of particle exchange energy

[57, 58]. We end up with a Schrödinger equation analogous to Eq. 2.9, except by the fact that

the effective Hamiltonian depends on the state. This can be written as follows,

Ĥ i
effΨi(r) =

[

− ~
2

2me

∇2 + V
i,σ
eff (r)

]

Ψσ
i (r), (2.11)

where

V
i,σ
eff = Vext(r) + VHartree(r) + V̂ i,σ

x (r), (2.12)

and the exchange potential V̂ i,σ
x (r) is a sum over orbitals of the same spin σ [16], written as

ˆ
V

i,σ
x (r) = −

[

∑

j

∫

dr′Ψσ∗
j (r′)Ψσ

i (r
′)

1

|r− r′|

]

Ψσ
j (r)

Ψσ
i (r)

. (2.13)

The Hartree-Fock approximation has been used for a long time as a way to calculate the

electronic structure of different systems. Even though it gives a reasonable picture of the

atomic system, the Slater determinant does not describe exactly the wavefunction of a many
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electron system. In this approach, all correlations, except those required by the exclusion

Pauli’s principle, are neglected [16]. The term that is not included in the HF approximation is

the electronic correlation.

In the following section, it is discussed another method to approach the many body problem

that takes into account not only the exchange but also the correlation effects.

2.4 Density Functional Theory

In quantum mechanics, complete information concerning the state of a system (atom,

molecule or solid) is contained in the wavefunction, determined by the Schrödinger equation.

However, in 1964, Hohenberg and Kohn proposed a new way of writing and solving quantum

problems based not only on the wavefunction, but on the ground state electron density [59, 60].

This is the proposal of Density Functional Theory (DFT), which offers a strategy to solve the

electronic problem of many body systems from the knowledge of the ground state electron

density, as all the Hamiltonian terms describing the system can be written as functionals of

this density. A functional is nothing more than a rule which assigns a number to a function.

Therefore, while the density is a function with three variables (position of the electrons), the

wavefunction is a function with 3N variables, which is much more complex to solve. Unlike

other theories addressing the problem of many bodies, DFT is, in principle, an exact theory,

although approximations have to be made in the practical implementation of this method. This

theory is based on the Hohenberg-Kohn theorems and the Kohn-sham equations, which we will

discuss in the following.

2.4.1 The Hohenberg-Kohn Theorems

The two theorems announced by Hohenberg and Kohn in 1964 serve as pillars of DFT [60]

and show that from the ground state electron density, it is possible to obtain the ground state

energy exactly. For the first theorem, we have

1 ◦ Theorem: From the ground state density ρ0(r), one can unambiguously determine, to

within a constant, the external potential Vext(r) of a system composed of many electrons.

In order to prove this theorem, we can start by supposing that there are two external po-

tentials, Vext(r) and V ′
ext(r), that differ from each other by more than a constant and that

originate from the same ground state density ρ0(r). These different potentials determine two
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Hamiltonians H and H ′, which provide two wavefunctions ψ0 and ψ
′
0 for their respective ground

states. According to this assumption, the Hamiltonians differ only by the external potential,

H = T + Vee + Vext (2.14)

and

H ′ = T + Vee + V ′
ext. (2.15)

We systematically have

Vext ⇒ H ⇒ ψ0 ⇒ ρ0(r) ⇐ ψ′
0 ⇐ H ′ ⇐ V ′

ext. (2.16)

Using the variational principle, we can write

〈ψ0|H|ψ0〉 = E0 < 〈ψ′
0|H|ψ′

0〉 = 〈ψ′
0|H ′|ψ′

0〉+ 〈ψ′
0|H −H ′|ψ′

0〉 (2.17)

E0 < E ′
0 +

∫

ρ0(r)(Vext − V ′
ext)dr. (2.18)

In the same sense, we have

〈ψ′
0|H ′|ψ′

0〉 = E ′
0 < 〈ψ0|H ′|ψ0〉 = 〈ψ0|H|ψ0〉+ 〈ψ0|H ′ −H|ψ0〉 (2.19)

E ′
0 < E0 −

∫

ρ0(r)(V
′
ext − Vext)dr. (2.20)

Adding these two equations, we obtain

E0 + E ′
0 < E ′

0 + E0. (2.21)

The equation above (Eq. 2.21) shows that if we consider two distinct external potentials

Vext and V
′
ext yielding the same ground state density, ρ0(r), we arrive at a contradiction, which

confirms that the external potential is univocally determined by the ground state electron den-

sity [59].

We can write the energy as a functional of the electron density by means of

E[ρ(r)] = T [ρ(r)] + Eee[ρ(r)] + Eext[ρ(r)], (2.22)
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where T [ρ(r)] represents the kinetic energy, Eee[ρ(r)] the electron-electron interaction energy,

and Eext[ρ(r)] includes the nuclei-electron interaction energy and the other contributions from

external fields. By separating terms that are system independent (T [ρ(r)] and Eee[ρ(r)]) from

those that are system dependent, we can rewrite Eq. 2.19 as

E[ρ(r)] =

∫

ρ(r)Vextdr + T [ρ(r)] + Eee[ρ(r)], (2.23)

or

E[ρ(r)] =

∫

ρ(r)Vextd
3r + FHK [ρ(r)]. (2.24)

here, FHK is the sum of the kinetic energy and the electron-electron interaction and it is a

universal functional. The second theorem can be stated as follows:

2 ◦ Theorem :A universal functional for the energy in terms of the density can be defined and

the ground state electron density is that which minimizes the energy, and this minimum value

E0 corresponds to the ground state energy E[ρ0(r)].

In order to prove the second theorem, we consider that

EHK [ρ(r)] = FHK [ρ(r)] +

∫

ρ(r)Vextd
3r, (2.25)

where we now call the energy functional as EHK . Now consider a system with the ground state

density equal to ρ0(r), so that

E0 = EHK(ρ0) = 〈ψ0|H|ψ0〉. (2.26)

Considering another density ρ1(r), which does not correspond to that of the ground state, we

have

E0 = EHK(ρ0) = 〈ψ0|H|ψ0〉 < 〈ψ1|H|ψ1〉 = E1 = EHK(ρ1). (2.27)

Therefore, for any density other than the ground state density, there is a corresponding wave-

function, ψ, which acting on the Hamiltonian of the system will return an energy value greater

than the ground state energy, that is, the energy is minimized by the ground state electron

density [59].

From these two theorems, we have seen that all the properties of a system can be determined
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by the ground state electron density.

The Hohenberg-Kohn theorems propose the exact solution of the many body problem from

the ground state density. However, they do not provide a practical procedure for the use of

the functionals in order to find the ground state electron density. In 1965, Kohn and Sham

suggested an approach to this problem and contributed heavily to DFT as we know and use

today.

2.4.2 Kohn-Sham Approach

Kohn and Sham proposed a fictitious system of non-interacting electrons with the same

electronic density of the real system [61]. However, the kinetic energy of this system is different

from the kinetic energy of the actual system, even though they have the same electronic density.

In order to obtain the kinetic energy of the auxiliary system, as proposed by KS, we have

to write

TKS = −1

2

N
∑

1

〈ψi|∇2|ψi〉, (2.28)

where ψi, which are the one-electron wavefunctions, must be written in terms of a basis in order

to conduct the calculations. The use of a set of basis functions for the eigenfunction expansion

allows one to write the problem in terms of matricial equations. In this case, one option is to

use orbital-like wavefunctions as basis functions, as we discuss later.

For the universal functional, we can write

F [ρ(r)] = TKS[ρ(r)] + J [ρ(r)] + Exc[ρ(r)], (2.29)

where J [ρ(r)] represents the classical Coulomb interaction and Exc[ρ(r)] is the exchange-

correlation energy, which represents the portion of the kinetic energy that can not be included

in TKS, as well as all the contributions of the electron-electron interaction other than J [ρ(r)].

Moreover, the Exc[ρ(r)] term takes into account all many-body effects of exchange and corre-

lation, and it can be written as [16]

Exc[ρ] = (T [ρ]− TKS) + (Eee[ρ]− J [ρ]). (2.30)

Therefore, the exchange-correlation energy Exc[ρ] is the difference between the kinetic energy

of the auxiliary system and the kinetic energy of the real system, plus non-classical electrostatic

contributions, including the exchange and correlation term [60]. Thus, in this auxiliary system,
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all the complexity of the many body system is included on the exchange-correlation functional,

that is, when solving the system of equations proposed by Kohn-Sham. Therefore, the accuracy

of the results is limited by this functional [60].

Regarding the Kohn-Sham Hamiltonian, we have

Ĥ i
eff (r) = −1

2
∇2 + V σ

KS(r), (2.31)

with

V σ
KS(r) = Vext(r) + VHartree(r) + Vxc(r), (2.32)

where the only unknown term is the exchange-correlation potential Vxc(r). The form of this

potential can be deduced by the use of the 2nd HK theorem using the density ρ as written from

the wavefunction of the auxiliary system.

Unlike the Hartree-Fock model, the Kohn-Sham approach to density functional theory

(DFT) is, in principle, exact, because approximations only take place when we have to choose

the form of the exchange-correlation energy functional Exc[ρ] and the corresponding potential

Vxc. Since the electronic density of the ground state is not known, the Kohn-Sham equations

must be solved self consistently, as shown schematically in Fig. 2.1 below.

Fig. 2.1: Representation of the self-consistent loop for solution of Kohn-Sham equation [62].
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2.4.3 Exchange and Correlation Functional

One of the major issues of Density Functional Theory is to find the most suitable exchange-

correlation functional for the studied systems. However, the exact form of these functionals is

unknown, thus hampering the way to the exact description of the electronic problem. The ac-

curacy of a numerical calculation based on DFT is, then, checked by comparison with reference

data, like those from experiments. Citing some of the widely used functionals in DFT-based

calculations, we have LDA (Local Density Approximation) [61] and GGA (Generalized Gra-

dient Approximation) [63]. They are discussed in the following subsections as representative

examples.

LDA (Local Density Approximation)

This approximation uses the idea of a homogeneous electron gas for density mapping [61].

It was proposed by Kohn and Sham in the original paper of 1965 where they announced their

approach to DFT. In this model, it is considered that the solids in the N ⇒ ∞, and V ⇒ ∞
limit, with N

V
= ρ, are similar to a homogeneous electron gas. Despite its simplicity, this

approach yields very good results for some systems, providing results close to those provided

by the Hartree-Fock method, which presents a higher computational cost [64]. We can write

the LDA functional as follows

ELDA
XC [ρ] =

∫

ρ(r)εxc(ρ(r))dr. (2.33)

where εxc(ρ(r)) is the exchange-correlation energy per particle of a uniform electron gas with

density ρ(r). It can be rewritten as

εxc(ρ(r)) = εx(ρ(r)) + εc(ρ(r)), (2.34)

with the exchange energy εx(ρ(r)) being exactly known [60]. However, the same does not hap-

pen to the correlation energy εc(ρ(r)), which is obtained approximately.

In general, LDA provides better results for homogeneous systems than for non-homogeneous

systems [60]. From the LDA, many other approaches to Exc the functional were developed. One

of them is the GGA (Generalized Gradient Approximation), which is a more complex approach

to the functional since it involves not only the density but also its gradient. The GGA is, in

principle, more suitable for systems where the density (ρ(r)) varies rapidly. The LDA has a

tendency to overestimate bond energies and underestimate bond lengths, while the GGA tends

to the opposite. Both approximations underestimate the band gap [65].
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GGA (Generalized Gradient Approximation)

In the generalized gradient approximation (GGA) [63], in addition to considering the elec-

tronic density, ρ(r), where the exchange-correlation energy is calculated, we also take into

account the gradient of this density. Therefore, the exchange-correlation term can be written

as

EGGA
XC [ρ] =

∫

εxc[ρ(r),∇ρ(r)]dr. (2.35)

The fact that we use not only the density ρ(r) at a given point, but also its gradient ∇ρ(r),
is justified by the necessity to take into account the rapid variation of the electronic density of

a system where the density is not uniform. Unlike LDA, there are different parametrizations

for the exchange-correlation term εxc[ρ(r),∇ρ(r)] and these different parametrizations give rise

to different functionals, for example, PBE [63], PBEsol [66] and WC [67]. The most used GGA

parametrization is the one developed by Perdew, Burke and Ernzerhof [68], which we used in

this work.

2.5 Other Approximations in Electronic Structure

2.5.1 Localized Basis Set

In all approaches to solve the electronic problem, one has to choose the algebraic represen-

tation for the electronic orbitals [55]. Among different ways to do it, we choose here a very

used method to expand the electronic wavefunctions, which is by the use of numerical atomic

orbitals [69]. This approach comes from the idea that the orbitals are mostly localized at

the atomic sites and the wavefunctions goes to zero at large distances. Therefore, performing

molecular calculations using atomic orbitals centered at the atoms as a basis set is known as

Linear Combination of Atomic Orbitals (LCAO).

2.5.2 Mesh-Cutoff

In order to solve the Kohn-Sham Hamiltonian, (Eq. 2.31), some terms of the potential have

to be calculated in the real-space [69]. The real-space grid defined to peform such calculations

is given by the mesh-cutoff parameter. It represents the highest energy of the plane waves that
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can be represented in the grid [69]. It is important to stress that the grid cutoff defined in the

LCAO context is not directly comparable to the energy cutoff in the context of plane waves

codes [69]. The relationship between the energy cut Ecut and the grid interval ∆x is given as

follows

Ecut =
~
2k2

2m
, (2.36)

with k = π
∆x

, which in atomic units becomes

Ecut =
1

2

( π

∆x

)2

. (2.37)

From Eq. 2.37, we can state that a higher value of the mesh-cutoff yields a finer real-space

grid and, therefore, more accurate results. The way this grid is defined will have strong influ-

ence on how accurate the results will be.

2.5.3 Pseudopotential

Another approximation for DFT-based calculations is the pseudopotential theory [70], where

the charge density is divided into core and valence contributions. The core is defined as the

nucleus plus the core electrons (non-valence) together. The use of pseudopotentials is based on

the fact that the electrons, close to the nucleus, participate poorly in chemical bonds and are,

therefore, taken to be part of the inner core together with the nucleus. Thus, the pseudopoten-

tial is an effective potential felt by the valence electrons and generated by the nucleus and the

core electrons. It replaces the real potential felt by the valence electrons. Therefore, only the

valence electrons are considered explicitly in the electronic structure calculation. This reduces

the computational cost substantially. The pseudopotentials must obey the following properties

in order to be considered norm-conserving [70]:

a) Real and pseudo eigenvalues must be the same for the same atomic configuration;

b) The real and pseudo wavefunctions must be equal beyond a chosen “core radius”, r > rc;

c) The integral of the real and pseudo charge density must agree when integrated up to rc

for each valence state;

d) The logarithmic derivatives of the real and pseudo wavefunctions and their first energy

derivatives must be equal for r > rc.

The properties c) and d) are indispensable for the pseudopotential to have an optimum trans-

ferability among a variety of chemical environments in self-consistent calculations in which the

pseudo charge density is treated as a real physical quantity [70].
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Among the different approaches, the Troullier-Martins pseudopotential is one of the most

used models, due to the fact that it produces smooth potentials. Moreover, the pseudofunctions

have no nodes in the core region, what makes the integrals calculations in the real-space grid

much faster. As a result, the total energy of the system and its physical properties present a

fast convergence with the improvement of the basis set [71].

By the concepts discussed above, it is restated that DFT is an exact theory that predicts the

properties of all states of a system. However, we are limited, in practice, by different factors,

such as the exchange-correlation functional. Pseudopotentials are an additional approximative

tool to minimize the computational cost. Regarding excited states, even though the DFT, in

principle, allows their determination, it has not been possible to develop practical methods

for this purpose yet, which has disseminated the wrong idea that DFT is only a ground state

theory.

2.6 Computational Details

2.6.1 SIESTA

In order to implement the DFT formalism and perform the electronic structure calculations

contained in this work, the SIESTA1 package was used. SIESTA performs self-consistent cal-

culations using the previously described DFT theory and it is based on the linear combination

of atomic orbital (LCAO) approach for the basis set [69] in the expansion of the electronic

wavefunctions. In the following, we show the Kohn-Sham Hamiltonian and the basis set for the

expansion of the electronic states used in SIESTA. The standard KS one-electron Hamiltonian

may be written as [69]

Ĥ = T̂ +
∑

I

V local
I (r) +

∑

I

V̂ KB
I (r) + VH(r) + Vxc(r), (2.38)

where I is an atom index, T̂ is the kinetic energy operator, V local
I (r) and V̂ KB

I (r) are the local

and nonlocal (Kleinman-Bylander) [72] parts of the pseudpotentials, VH(r) and Vxc(r) are the

total Hartree and the exchange-correlation potential of atom I.

The local part of the pseudopotential is a long-range operator. In order to eliminate the

long range in r, it is defined a basis set for the expansion of the electronic states. It will consist

of pseudo valence orbitals of limited range. Therefore, the Kohn-Sham Hamiltonian problem

is cast mathematically into the LCAO method.

1Spanish Initiative for Electronic Simulation with Thousands of Atoms
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Regarding the basis functions, if we use one basis function for each valence orbital, we have

the so called single-zeta (SZ) basis. Using two basis functions for each orbital, we have, then,

a double-zeta basis (DZ). Aiming to provide an even more complete basis, polarization orbitals

can be included, i.e., double-zeta plus polarization (DZP).

In summary, we performed the electronic structure calculations using DFT theory by means

of SIESTA code [69]. The GGA functional is chosen to represent exchange-correlation energy

and a DZP basis set is used to expand the electronic wavefunctions. A 400 Ry mesh-cutoff was

used for the real-space integrations. A total of 46 (30) Monkhorst-Pack k-points were used for

the BZ integration for the shortest (longest) 1D system not only for the convergence, but also

for the calculation of all the physical quantities we investigated.



Chapter 3

Results

In this chapter we present and discuss our electronic structure study on proposed 1D and 2D

systems having a naphthyl unit as basic building block. We demonstrate that these materials

show distinct physical properties in comparison to graphene.

3.1 Two Dimensional Systems

The systems proposed in this work, which we named naphthylenes, are formed by different

arrangements of naphthyl units into a 2D lattice. These structures are composed by the same

basic building block, but they differ regarding their assembling. The unit cell of the so called

naphthylene-α contains 30 atoms, while the structure we named naphthylene-β has 10 atoms

in the unit cell. An illustration of their atomic structure is shown in Fig. 3.1 a) and d). The

basic unit blocks (naphthyl groups) are joined to each other by square rings in both cases. On

one hand, the α case shows 12 and 9-membered rings while in the other hand, the β structure

features 10-membered rings as resulting from the particular assembling of its elementary parts.

It is important to stress that the BZ for naphthylene-α is similar to that of graphene, namely a

regular hexagon. This is because its lattice vectors (|~a1| = |~a2| = 10.33 Å) form an angle of 60◦

between them. However, while still being hexagonal, the BZ for naphthylene-β is not a regular

polygon, since the angle between the lattice vectors (|~a1| = |~a2| = 5.61 Å) is about 73.5◦.

43
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Fig. 3.1: a) Naphthylene-α atomic structure together with its unit cell, b) Electronic band
structure of naphthylene-α plotted along high-symmetry direction on the BZ, c) Plot of the
valence and conduction bands over the entire BZ. The same information for naphthylene-β is
displayed in d), e) and f), respectively.

Concerning the C-C bond lengths, naphthylene-α and naphthylene-β are different from

graphene whereby all the C-C bonds have the same length (about 1.42 Å ). In Fig. 3.2 we show

the different C-C bond lengths for each two-dimensional system considered here.
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Fig. 3.2: C-C bond lengths (in Å ) in naphthylene-α and naphthylene-β, respectively.

Note that the bond lengths vary in the 1.361 Å-1.518 Å range for the α case, while the

C-C distance runs from 1.383 Å to 1.506 Å in the β sheet. These different C-C bond lengths

strongly suggest a non-delocalized character of the electronic states in the structure, what is

quite different from most of sp2 carbon systems described so far [24]. Usually, in sp2 carbon
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structures, such as graphene, there are no distinct single or double bonds once the electrons of

C-C bonds are distributed equally among each C atom [24]. As a consequence, all the bonds

have the same length. Figure 3.1 also shows the electronic band structures (b, e) along high-

symmetry lines of their Brillouin zones, and a plot of the valence and the conduction bands

over the entire BZ (e, f) for both naphthylene systems. They present a metallic behavior once

the electronic bands cross the Fermi level, which is located at 0 eV. Naphthylene-α electronic

band structure displays some localized states at the Fermi level along the Γ-K line, while for

naphthylene-β we see that the bands cross the Fermi level.

It is well known that sp2 carbon nanostructures with ribbon like geometry can have elec-

tronic properties dramatically different from their 2D counterparts [1, 15]. Therefore, after ob-

taining the electronic band structure of the 2D carbon nanostructures previously presented, we

propose to study the nanoribbons that can be constructed from naphthylene-α and naphthylene-

β sheets.

3.2 Naphthylene-α Nanoribbons

In this section we present and discuss the electronic properties of nanoribbons conceptually

formed from naphthylene-α sheet. We focus on data related to electronic band structures, local

density of states and projected density of states.

3.2.1 Studied Structures

For naphthylene-α based nanoribbons, we “cut” and analyzed distinct nanoribbons con-

sidering different periodic directions and edges. These two first families of nanoribbons we

considered are displayed in Fig. 3.3 and are periodic in the Y direction of naphthylene-α (cor-

responding to the direction of the ~a1-~a2 lattice vector). Figure 3.3 a), b) and c) show zigzag

naphthylene nanoribbons (ZNNRs) with different widths (w) and the same type of edge (hsh).

This nomenclature was chosen because the edge atoms are part of two hexagons connected by

a square (hsh) and the bonds on this edge resemble the zigzag type (Z). The width (w) of these

NNRs is defined by the number of dodecagon lines parallel to the periodic direction. On the

other hand, in Fig. 3.3 d), e) and f) , we have ZNNRs with different widths (w), also deter-

mined by the number of dodecagon lines parallel to the periodic direction, and with another

type of edge (hh), where hh means that the edge atoms are part of two hexagons.
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a) b) c)

d)                       e)                                f)

Fig. 3.3: a) αZNNR-hsh (w = 1), b) αZNNR-hsh (w = 2), c) αZNNR-hsh (w = 3), d) αZNNR-
hh (w = 1), e) αZNNR-hh (w = 2), f) αZNNR-hh (w = 3) nanoribbons. The box in red
highlights the unit cell of the nanoribbons.
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For the X direction as the periodic orientation (corresponding to the direction of the ~a1+~a2

lattice vector), we have ANNRs with two types of edges (hh and h), where the ANNRs term is

due to the fact that the edge bonds are similar to the armchair type edge (A) in conventional

graphene nanoribbons [42]. The hh means that the most peripherical atoms in the non-periodic

direction form two hexagons and h means that we have an edge formed by single units of

hexagons. Figure 3.4 a), b), and c) represent different widths for the h edge and Fig. 3.4 d), e)

and f) display different widths for the hh edge type. In a similar way, the width of the NNRs

are also determined by the number of dodecagon lines parallel to the periodic direction.

a) b) c)

d) e) f)

Fig. 3.4: a) αANNR-h (w = 1), b) αANNR-h (w = 2), c) αANNR-h (w = 3), d) αANNR-hh (w
= 1), e) αANNR-hh (w = 2), f) αANNR-hh (w = 3) nanoribbons. The box in red highlights
the unit cell of the nanoribbons.
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For each family of NNRs, there is a simple equation that relates the number of carbon atoms

by unit cell with the width w of the ribbon, as shown in Table 3.1.

Tab. 3.1: Number of carbon atoms by unit cell as a function of the width of the ribbon.

Family of Ribbons
Number of Carbon

Atoms

αZNNR-hsh 30w+20
αZNNR-hh 30w+40
αANNR-h 30w+32
αANNR-hh 30w+40

The number of hydrogen atoms in a unit cell is 16, 12, 8, and 8 in αANNR-hh, αANNR-h,

αZNNR-hh, and αZNNR-hsh systems, respectively.
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3.2.2 Electronic Band Structures and Local Density of States

In this section, we present the electronic properties of the 1D systems obtained from

naphthylene-α. We show band structures and a plot of their Local Density of States (LDOS)

around the Fermi level (integrated from -0.1 eV to 0.1 eV) in order to verify how these states

are arranged in the structures. In these calculations, we do not consider spin polarization. Fig-

ure 3.5 also shows the LDOS plot for the αZNNR-hsh nanoribbons along with their electronic

band structures.
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Fig. 3.5: LDOS plot (front and side view) for αZNNR-hsh a) w = 1, b) w =2 and c) w = 3 nanoribbons
from -0.1 eV to 0.1 eV around the Fermi level along with their electronic band structures. Isosurface
value of 0.002.

The three studied ribbons from the αZNNR-hsh family present a metallic behavior. In

addition, we see that the number of levels crossing the Fermi level increases for wider ribbons.

Therefore, since the edges do not change with the increasing of the width, it suggests that these

states are not edge states (as we have in traditional graphene nanoribbons [41, 42, 73]), but

rather inner states. This is verified from the LDOS plot. In special for w = 3, note that these

frontier states are mainly concentrated in the middle of the ribbon. Besides that, these states

are not equally distributed among the atoms, what was already suggested by the different bond

lengths in the structure. Most of them are localized in the bonds between two naphthyl units.
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The side view plot of the LDOS is shown to reassure the majority of π orbitals as we already

expect for sp2 carbon materials.

Fig. 3.6 displays the LDOS plot for the αZNNR-hh a) w = 1, b) w =2 and c) w = 3

nanoribbons along with their electronic band structures.
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Fig. 3.6: LDOS plot (front and side view) for αZNNR-hh a) w = 1, b) w = 2, and c) w = 3 nanoribbons
from -0.1 eV to 0.1 eV around the Fermi level along with their electronic band structures. Isosurface
value of 0.002.

For this family of ribbons shown in Fig. 3.6, we have that all of them also present a metallic

behavior as the family of ribbons previously discussed. Similarly, the states near the Fermi

level are not edge states. The LDOS side view plot shown for all these three systems allows

us to confirm the predominance of π orbitals around the Fermi level. The similarities between

these two families of ZNNRs is a consequence of the inner character of the states around the

Fermi level, so that they are only slightly affected by details of the edge structure.
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We now move to the armchair families of naphthylene nanoribbons. In Fig. 3.7 we show

the LDOS plot and the electronic band structures for the αANNR-h nanoribbons, which are

periodic in the X direction of naphthylene-α sheet.
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Fig. 3.7: LDOS plot (front and side view) for αANNR-h a) w = 1, b) w = 2, and c) w = 3 nanoribbons
from -0.1 eV to 0.1 eV (except for (w = 2)) around the Fermi level along with their electronic band
structures. Isosurface value of 0.002.

Except by a single system, these ribbons also present a metallic behavior. The second struc-

ture, αANNR-h (w = 2), displays an indirect band gap of approximately 0.25 eV. Therefore,

instead of ploting its LDOS from -0.1 eV to 0.1 eV, we considered the entire region containing

some valence and some conduction bands (from -0.17 eV to 0.22 eV) for this particular system.

These states are mainly localized at the bonds between the naphthyl units. The electronic band

structure for αANNR-h (w = 1) shows flat bands at the Fermi level. In addition, these flat

bands also indicate the possibility to obtain spin polarized structures (as in the case of ZGNRs

[41]), which will be discussed in a later section. From the electronic band structure of the third

structure, αANNR-h (w = 3), we see that this system is also metallic, but with less localized

electronic states at the Fermi level in comparison with the first system. From its LDOS plot,

we observe that most of the states are localized around the second line of pores of the ribbon.
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Similarly to the previous families studied, these are inner states.

Figure 3.8 shows the LDOS plot and the electronic band structures for the αANNR-hh

nanoribbons, which are also periodic in the X direction of naphthylene-α.

-2

-1

0

1

2

E
n

e
rg

y
 (

e
V

)

Γ X
-2

-1

0

1

2

E
n

e
rg

y
 (

e
V

)

Γ X
-2

-1

0

1

2

E
n

e
rg

y
 (

e
V

)

Γ X

a) b) c)

Fig. 3.8: LDOS plot (front and side view) for αANNR-hh a) (w = 1), b) (w = 2), and c) (w = 3)
nanoribbons from -0.1 eV to 0.1 eV around the Fermi level along with their electronic band structures.
Isosurface value of 0.002.

Similarly to the αANNR-h (w = 1), the αANNR-hh (w = 1) system presents flat bands

near the Fermi level. The second structure of this family, αANNR-hh (w = 2), displays a very

small indirect band gap of approximately 0.08 eV. Regarding the third ribbon, αANNR-hh (w

= 3), once again we have an increase in the number of levels around the Fermi level, showing

that these states are distributed over the structure and not only localized at the edges, what

is also true for the two first systems of this family of nanoribbons. A difference between the

armchair and the zigzag ribbons is that the frontier bands are more dispersive in the zigzag

configurations. Once again, due to the inner aspect of the frontier states, the ANNRs show to

be weakly influenced by details of the edge structure.
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It is known that zigzag graphene nanoribbons (ZGNRs) present a magnetic ordering as

a consequence of electron spin polarization [15]. We note that some of our studied systems

show localized levels at the Fermi energy, which can result in spin polarization, as discussed,

for instance, for graphene flakes [74]. Therefore, we proceeded with spin polarized calcula-

tions in order to investigate the possible existence of such states in αNNRs. The following

section presents and discusses the ribbons that converged to either antiferromagnetic (AFM)

or ferromagnetic (FM) states.

3.2.3 Spin Polarization

Considering all the nanoribbons constructed from naphthylene-α previously studied, we ve-

rified the possibility to obtain ferromagnetically and antiferromagnetically polarized systems.

When the spin orientation of neighbor particles are opposite, we say they are antiferromagneti-

cally aligned. On the other hand, when all the moments are aligned in the same direction, they

are ferromagnetically aligned. All the systems, except by the αANNR-h (w = 1) and αANNR-

hh (w = 1) nanoribbons displayed in Fig. 3.9, converged to the non polarized (NP) state. The

flat bands around the Fermi level for these two systems in the NP state already suggested a

magnetic ordering. The absence of such magnetic states in the zigzag systems is not surprising,

as their bands around the Fermi level are dispersive, as well as it is the case for the frontier

bands of wide armchair systems, which become more dispersive for increasing width. As shown

for several carbon structures, the existence of localized levels is a fundamental ingredient for

the emergence of spin polarized states [15, 41, 42, 74, 75]. Figure 3.9 shows αANNR-h (w = 1)

and αANNR-hh (w = 1) nanoribbons along with their electronic band structures in different

states.
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Fig. 3.9: a) αANNR-h (w = 1), b) αANNR-hh (w = 1) nanoribbons along with the electronic
band structures for the non polarized (NP), antiferromagnetic (AFM) and ferromagnetic (FM) states,
respectively.

Regarding the total energy of the structures, we have that EFM < EAFM < ENP (∆ENP−FM

= 0.09 eV and ∆ENP−AFM = 0.05 eV ) for αNNR-h (w = 1) and EFM < ENP (∆ENP−FM =

0.05 eV) for αNNR-hh (w = 1). The fact that the FM state is more stable than the AFM state

can be explained by the fact that naphthylene-α is not a bipartite lattice as graphene [76].

The most significant change relative to the NP state regarding the electronic band structures

of these two ribbons occurs when the systems are in the FM state. The AFM state of the

αANNR-h (w = 1) nanoribbon opens a very small band gap (∼ 0.08 eV), what also happens

in the FM state (∼ 0.06 eV). However, in the latter case we clearly see spin up and spin down

splitting for the electronic bands, which leads to a magnetic moment of 1.89µB. The localized

states at the Fermi level in the absence of spin polarization are eliminated when the structure

is either in AFM or FM state. Regarding the second structure, αANNR-hh (w = 1), we are

only able to find a FM state. For the αANNR-hh, the FM state presents a magnetic moment

of ∼1.77 µB, which is now slightly lower than the previous case as we now have a set of bands

crossing the Fermi level. In this state, the energy levels for spin up and spin down contribution

are not degenerated and this structure displays a metallic behavior once the bands cross the

Fermi level.
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In order to get further insight on these electronic states, we analyze the spin density and

density of states (DOS) for the αANNR-h (w = 1) system in the FM state. We divided the

structure in two different regions as we show in Fig. 3.10, where we plot the spin polarization

for αANNR-h (w = 1) ribbon. The Region 1 is the one involving the dodecagon and the Region

2 involves the two eneagons.

R E G I O N  1 R E G I O N  2

Spin Density  Distribution

Fig. 3.10: Spin density distribution for the αANNR-h (w = 1) structure.

It is observed from Fig. 3.10 that the spin density is mainly located in the region 2, more

precisely around the 4 centered atoms of this region, which belong to the same naphthyl unit.

In addition to the spin distribution, we also investigated the LDOS for the levels near the

Fermi level from both spin up and spin down contributions. In Fig. 3.11, we show the band

structure and the DOS from spin up contribution for both regions, along with the LDOS plot

for the bands from spin up contribution near the Fermi level.
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Fig. 3.11: Electronic band structure for spin up states, total DOS (spin up contribution) along with
the PDOS (spin up contribution) from REGION 1 and REGION 2, LDOS plot for I and II bands
(spin up contribution) around the Fermi level. Isosurface value of 0.0009 for LDOS plot.
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We focus our analysis on the first two bands below the Fermi level, which are the main

responsible for the systems’s magnetic moment. According to Fig. 3.11, we can see from the

LDOS plot how these states are distributed over the structure. From the projected density

of states (PDOS), we know how each region contributes to the total DOS. We note from the

PDOS and LDOS plots that there is a significant contribution to the DOS from the region that

contains the two eneagons (Region 2). Note that the state I lies mainly in between regions

1 and 2. On the hand, the state II is predominantly localized in the naphthyl unit between

eneagons. In fact, if we take a look at the PDOS information only for the first level below the

Fermi level, we have that both regions give almost the same contribution to the DOS. On the

other hand, the PDOS for the state II matches the LDOS information on the fact that it is

mostly from region 2.

In Fig. 3.12, we show the electronic band structure, the DOS from spin down contribution

along with the LDOS plot for the first two spin-down bands above the Fermi level.
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Fig. 3.12: a) Electronic band structure for spin down states, total DOS (spin down contribution)
along with the PDOS (spin down contribution) from REGION 1 and REGION 2 and LDOS plot for
the two bands (I) (spin down contribution) above the Fermi level. Isosurface value of 0.002 for LDOS
plot.

Similarly to the states from spin up contribution, the spin down states are mainly distributed

over the region 2 as shown in Fig. 3.12. There is a significant contribution not only from the 4

atoms centered in region 2, but also from the bonds between 2 naphthyl units. In fact, this plot

looks like a superposition of the two spin up states below the Fermi energy. These corresponds

to the two spin down bands from the unpolarized states which were pushed up by the charge

occupying the spin up bands.
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3.3 Naphthylene-β Nanoribbons

3.3.1 Studied Structures

Considering the 2D system naphthylene-β, we can also construct nanoribbons with different

types of edge and periodic directions. The nanoribbons presented in Fig. 3.13 were constructed

so that they are periodic in the Y direction of naphthylene-β previously shown. The structures

shown in a), b) and c) represent armchair naphthylene nanoribbons (ANNR) with different

widths (w) and the same type of edge, hh, since the bonds on the edge resemble the armchair

type (A), and the most peripherical atoms on the edge in the non-periodic direction are part of

two hexagons. Figures 3.14 a), b) and c) represent three NNRs with the same type of edge (h)

and different widths in the same periodic direction, while Figs. 3.14 d), e) and f) show NNRs

with different widths, hh edge type and periodic in the X direction. The width (w) of these

NNRs were chosen by the number of decagon lines parallel to the periodic direction.

a) b) c)

Fig. 3.13: a) βANNR-hh (w = 1), b) βANNR-hh (w = 2), c) βANNR-hh (w = 3) nanoribbons.
The box in red highlights the unit cell.
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b) c)a)

e)                       f)d)

Fig. 3.14: a) βANNR-h (w = 1), b) βANNR-h (w = 1), c) βANNR-h (w = 3), d) βZNNR-hh (w =
1), e) βZNNR-hh (w = 2), f) βZNNR-hh (w = 3) nanoribbons. The box in red highlights the unit
cell.

Regarding the number of carbon atoms by unit cell, they are listed in Table 3.2. For each

family, there is an equation that relates the number of carbon atoms by unit cell with the width

w of the ribbon.
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Tab. 3.2: Number of carbon atoms by unit cell as a function of the width of the ribbon.

Family of Ribbons
Number of Carbon

Atoms

βANNRhh 10w+20
βANNRh 10w+12
βZNNRhh 10w+20

3.3.2 Electronic Band Structures and Local Density of States

In this section, we present the electronic band structures of the 1D systems obtained from

naphthylene-β along with their Local Density of States (LDOS) around the Fermi level (from

-0.1 eV to 0.1 eV) to verify how these states are arranged in the structure. Figure 3.15 shows

the LDOS plot for the βANNR-h nanoribbons along with their electronic band structures.
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Fig. 3.15: LDOS plot (front and side view) for βANNR-h a) (w = 1), b) (w = 2), and c) (w = 3)
nanoribbons from -0.1 eV to 0.1 eV around the Fermi level along with their electronic band structures.
Isosurface value of 0.006.

Unlike naphthylene-α nanoribbons, the states close to the Fermi level lie at the X point

of the BZ. In this point, they are in a number which also increases with ribbon width. The

conduction and valence bands, get closer to the Fermi level at the Γ point as the ribbons become
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larger. The three of them present a metallic behavior and the bands approach each other near

the X point of the BZ. Similarly to the previous structures, the density of states is distributed

over the whole structure, mainly around the pores, and not only located at the edges as we see

in traditional graphene nanoribbons [41]. The side view of the LDOS plot for the three systems

shows the majority of π orbitals around the Fermi level.

In Fig. 3.16 we have the LDOS plot and the electronic band structures for the βANNR-hh

nanoribbons.
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Fig. 3.16: LDOS plot (front and side view) for βANNR-hh a) (w = 1), b) (w = 2), and c) (w = 3)
nanoribbons from -0.1 eV to 0.1 eV around the Fermi level along with their electronic band structures.
Isosurface value of 0.0008.

One can see that these three βANNR-hh nanoribbons are metallic and, similarly to the

βANNR-h family, the valence and conduction bands meet at the Fermi level at the X point,

where they join an additional set of 2(w − 1) bands. Therefore, the electronic band structures

of βANNRhh nanoribbons are very similar to those of βANNR-h once they are different only

at the edges and, as we have seen, the edges do not play the most important role in the

determination of the electronic properties of the discussed systems in this work. In spite of

that similarity, for the βANNR-hh systems, the condution and valence bands are closer to the

Fermi level at the Γ than those of βANNR-h nanoribbons with same w.

Figure 3.17 displays the LDOS plot for the βZNNR-hh nanoribbons, which are periodic in
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the X direction of naphthylene-β, along with their electronic band structures.
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Fig. 3.17: LDOS plot (front and side view) for βZNNR-hh a) (w = 1), b) (w = 2), and c) (w = 3)
nanoribbons from -0.1 eV to 0.1 eV around the Fermi level along with their electronic band structures.
Isosurface value of 0.0008.

From the electronic band structures of the βZNNR-hh nanoribbons, we can see that the

three of them also present a metallic behavior and the valence and conduction bands cross

each other between the Γ and X points, almost at the same k point. Regarding the LDOS

information, for all the three of them, most of the states are located around the pores of the

structures.
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3.3.3 Spin Polarization

Considering all the nanoribbons previously presented that were constructed from naphthylene-

β, we verified the possibility to obtain ferromagnetically and antiferromagnetically polarized

systems, but all of them, except those displayed in Fig. 3.18 and Fig. 3.19, converged to the

NP state. Figure 3.18 shows the βANNR-hh ribbons in the NP and AFM states.
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Fig. 3.18: a) βANNR-hh (w = 1), b) βANNR-hh (w = 2), and c) βANNR-hh (w = 3) nanoribbons
along with the electronic band structures for the non polarized (NP) and antiferromagnetic (AFM)
states, respectively.

From Fig. 3.18a, we can see a ∼ 0.14 eV gap for the βANNR-hh (w = 1) ribbon in the AFM

state, while in Figs. 3.18b-c, we have a gap opening of ∼ 0.40 eV in the AFM state for both
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βANNR-hh (w = 2) and βANNR-hh (w = 3). A FM state was not found for these systems.

Regarding the total energy, we have that ∆ENP−AFM = 0.004 eV (w = 1), ∆ENP−AFM = 0.069

eV (w = 2) and ∆ENP−AFM = 0.152 eV (w = 3) . Figure 3.19 shows the βZNNR-hh ribbons

in different states.
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Fig. 3.19: a) βZNNR-hh (w = 1), b) βZNNR-hh (w = 2) and c) βZNNR-hh (w = 3) nanoribbons
along with the electronic band structures for the paramagnetic (PM), antiferromagnetic (AFM) and
ferromagnetic (FM) states, respectively.

From Fig. 3.19, we can see that the βZNNR-hh (w = 1) and βZNNR-hh (w = 3) structures

opened an indirect band gap of approximately 0.60 eV and 0.56 eV, respectively, when in the

AFM state, while the w = 2 ribbon shows a direct band gap (from a spin-down to a spin-up
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level) of 0.47 eV at Γ. In the FM state, βZNNR-hh (w = 1) still presents a metallic behavior as

in the NP state, however, the bands from the spin up and spin down contribution have different

energy values. Finally, the w = 3 ribbon shows an indirect band gap of 0.09 eV. It is important

to stress that the w = 2 system features only an AFM state, and differently from the other two

systems, these bands are not degenerated relative to the spin. This is related to details of the

atomic structure, as we discuss below. Concerning the total energy of these systems, we have

that ∆ENP−AFM = 0.116 eV and ∆ENP−FM = 0.026 eV for the w = 1 system, ∆ENP−AFM

= 0.139 eV for w = 2, and ∆ENP−AFM = 0.212 eV and ∆ENP−FM = 0.09 eV for the w = 3

ribbon.

Aiming to investigate the spin polarized states of these systems proposed from naphthylene-

β, we plotted the spin density as shown in the following. Figure 3.20 presents the spin density

plot for the βANNR-hh ribbons in the AFM state.

a) b) c)

Fig. 3.20: Spin density distribution of a) βANNR-hh (w = 1), b) βANNR-hh (w = 2) and c) βANNR-
hh (w = 3) nanoribbons in the AFM state.

Differently from the α case, naphthylene-β features a bipartite network, in the sense that

we can split the atoms into two sets, A, and B, so that each atom from A has only neighbors

from the set B, and vice-versa. The spin plot from Fig. 3.20 resembles such features, since each

atom with spin-up polarization (in blue) is bonded to three atoms with spin-down (in red).

Moreover, these 3 ribbons are more stable in the AFM state.
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Moving to the βZNNR-hh systems, in Fig. 3.21 we have a plot of the spin density distribu-

tion.

a) b) c)

Fig. 3.21: Spin density distribution of a) βZNNR-hh (w = 1), b) βZNNR-hh (w = 2) and c) βZNNR-
hh (w = 3) nanoribbons in the AFM and FM state.

The w = 1 and w = 3 systems converged to both AFM and FM states, differently from the

w = 2 ribbon that showed only the AFM state. Note that, even with naphthylene-β being a

bipartite network, the outmost carbon atoms from opposite edges of the w = 2 system belong

to the same sublattice, so there is a natural imbalance between the spin resolved electronic

clouds, and these atoms present the same spin polarization. This explains why the bands in

the AFM state of w = 2 are not spin degenerated. Once again, all the βZNNR-hh systems are

more stable in the AFM state.



Chapter 4

Conclusions and Perspectives

In summary, we proposed in this work a class of structures based on naphthyl units, and

we studied their electronic properties by means of DFT calculations. These naphthyl units can

be arranged in different assemblings, resulting in membranes with distinct kinds of pores, what

is an interesting result concerning the potential applications as in gases separation, for exam-

ple. The two two-dimensional systems originated from the different arrangements of naphthyl

groups were named naphthylene-α and naphthylene-β. Besides proposing and investigating the

two dimensional systems, it was also constructed and studied different nanoribbon families.

From our findings, we can state that these 2D-systems show a metallic behavior, and most of

the naphthylene-α, and -β nanoribbons share the metallic character of their 2D counterparts.

However, the frontier states in these systems lie in the inner part of ribbon, rather than at their

edges, like in zigzag edged graphene nanoribbons. As a result, their electronic properties are

mostly determined by chirality, rather than by the details of their edge structure. This prop-

erty has practical implications for nanotechnological applications, as samples at this size scale

commonly contain defects, specially at their edges. This feature can also play an important

role on electronic transport properties once inserted into prototypes of nanodevices, since they

can provide a more efficient electron injector in nanojunctions having these ribbons as leads.

Regarding the spin polarization, few systems converged to spin polarized states.

As perspective, besides investigating other physical quantities for our systems and studying

more types of nanoribbons, we also intend to construct and to study naphthylene nanotubes as

Koch et al proposed to do with graphenylene [50]. In their work, besides investigating the elec-

tronic properties of distinct graphenylene nanotubes, they also considered the case of lithium

adsorption and showed that graphenylene nanotubes offer a very unique and promising struc-

ture for lithium storage [50]. Besides that, we also aim to study naphthylene based systems

under effects of hydrogenation/halogenation as performed on graphenylene by Liu et al [77].

66
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Liu et al studied how the electronic properties of graphenylene behave considering different

types, location and concentration of hydrogen/halogen atoms in the structure.
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Quo vadis. Qúımica Nova, 36(10):1533–1539, 2013.

[7] E. Osawa, H. W. Kroto, P. W. Fowler, and E. Wasserman. The evolution of the football

structure for the c60 molecule: A retrospective. Philosophical Transactions: Physical

Sciences and Engineering, 1993.

[8] H. W. Kroto. C60b buckminsterfullerene, other fullerenes and the icospiral shell. Com-

puters & Mathematics with Applications, 17(1-3):417–423, 1989.

[9] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. A. Jiang, Y. Zhang, S. V. Dubonos, I. V.

Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films. Science,

306(5696):666–669, 2004.

[10] K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, et al. A

roadmap for graphene. Nature, 490(7419):192, 2012.

68



BIBLIOGRAPHY 69

[11] A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko,

P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, et al. Micrometer-scale ballistic

transport in encapsulated graphene at room temperature. Nano Letters, 11(6):2396–2399,

2011.

[12] S. Bae, H. Kim, Y. Lee, X. Xu, J-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R.

Kim, Y. I. Song, et al. Roll-to-roll production of 30-inch graphene films for transparent

electrodes. Nature Nanotechnology, 5(8):574, 2010.

[13] J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. Van Der Zande, J. M. Parpia, H. G.

Craighead, and P. L. McEuen. Impermeable atomic membranes from graphene sheets.

Nano Letters, 8(8):2458–2462, 2008.

[14] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau.

Superior thermal conductivity of single-layer graphene. Nano Letters, 8(3):902–907, 2008.

[15] O. V. Yazyev. Emergence of magnetism in graphene materials and nanostructures. Reports

on Progress in Physics, 73(5):056501, 2010.

[16] R. M. Martin. Electronic structure: basic theory and practical methods. Cambridge uni-

versity press, 2004.

[17] J. Simons. An introduction to theoretical chemistry. Cambridge University Press, 2003.

[18] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. Geim. The electronic

properties of graphene. Reviews of Modern Physics, 81(1):109, 2009.

[19] M. I. Katsnelson. Graphene: carbon in two dimensions. Materials Today, 10(1-2):20–27,

2007.

[20] K. I. Bolotin, K. J. Sikes, Z. D. Jiang, M. Klima, G. Fudenberg, J. Hone, P. H Kim, and

H. L. Stormer. Ultrahigh electron mobility in suspended graphene. Solid State Communi-

cations, 146(9-10):351–355, 2008.

[21] F. Banhart, J. Kotakoski, and A. V. Krasheninnikov. Structural defects in graphene. ACS

Nano, 5(1):26–41, 2010.

[22] H. Liu, Y. Liu, and D. Zhu. Chemical doping of graphene. Journal of Materials Chemistry,

21(10):3335–3345, 2011.



BIBLIOGRAPHY 70

[23] G. Z. Magda, X. Jin, I. Hagymási, P. Vancsó, Z. Osváth, P. Nemes-Incze, C. Hwang,
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