

Universidade Federal do Piauí Centro de Tecnologia Programa de Pós-Graduação em Engenharia Elétrica

Heurística de Factibilização para Algoritmos Evolutivos na Reconfiguração de Redes em Sistemas de Distribuição de Energia Elétrica

Ênio Rodrigues Viana

Teresina-PI, 26 de Setembro de 2019

Ênio Rodrigues Viana

Heurística de Factibilização para Algoritmos Evolutivos na Reconfiguração de Redes em Sistemas de Distribuição de Energia Elétrica

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Engenharia Elétrica da UFPI (área de concentração: Controle e Automação), como parte dos requisitos necessários para a obtenção do Título de Mestre em Engenharia Elétrica.

Universidade Federal do Piauí – UFPI Centro de Tecnologia Programa de Pós-Graduação em Engenharia Elétrica

Orientador: Dr. Aldir Silva Sousa

Teresina-PI 26 de Setembro de 2019

FICHA CATALOGRÁFICA Universidade Federal do Piauí Biblioteca Comunitária Jornalista Carlos Castello Branco Serviço de Processos Técnicos

V614h Viana, Ênio Rodrigues. Heurística de factibilização para algoritmos evolutivos na reconfiguração de redes em sistemas de distribuição de energia elétrica / Ênio Rodrigues Viana. -- 2019. 112 f. : il.
Dissertação (Mestrado) – Universidade Federal do Piauí, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Elétrica, Teresina, 2019. "Orientador: Prof. Dr. Aldir Silva Sousa."
1. Energia elétrica - Distribuição. 2. Sistema de Distribuição Radial. 3. Algoritmo evolutivo. 4. Heurística. I. Sousa, Aldir Silva. II. Título.

Elaborado por Thais Vieira de Sousa Trindade - CRB-3/1282

Ênio Rodrigues Viana

Heurística de Factibilização para Algoritmos Evolutivos na Reconfiguração de Redes em Sistemas de Distribuição de Energia Elétrica

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Engenharia Elétrica da UFPI (área de concentração: Controle e Automação), como parte dos requisitos necessários para a obtenção do Título de Mestre em Engenharia Elétrica.

Defesa aprovada. Teresina-PI, 26 de Setembro de 2019:

Dr. Aldir Silva Sousa Orientador

Dr. Fábio Rocha Barbosa Docente Interno ao Programa

sento

Dr. Hermes Manoel Galvão Castelo Branco Docente Interno ao Programa

auto h. h

Dr. Eduardo Nobuhiro Asada Docente Externo ao Programa

Teresina-PI 26 de Setembro de 2019 Ênio Rodrigues Viana

Heurística de Factibilização para Algoritmos Evolutivos na Reconfiguração de Redes em Sistemas de Distribuição de Energia Elétrica

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Engenharia Elétrica da UFPI (área de concentração: Controle e Automação), como parte dos requisitos necessários para a obtenção do Título de Mestre em Engenharia Elétrica.

Defesa aprovada. Teresina-PI, 26 de Setembro de 2019:

Dr. Aldir Silva Sousa Orientador

Dr. Fábio Rocha Barbosa Docente Interno ao Programa

Dr. Hermes Manoel Galvão Castelo Branco Docente Interno ao Programa

Dr. Eduardo Nobuhiro Asada Docente Externo ao Programa

Teresina-PI 26 de Setembro de 2019

À minha mãe Lucinha e minha namorada Anakelle, por sempre estarem comigo em todos os momentos.

Agradecimentos

Agradeço a Deus.

À minha mãe pelo meu cuidar, por sua preocupação, pelo seu jeito especial de cuidar de mim, por sempre lutar com todas as forças pelo meu bem estar e pela minha educação ainda que em meio a todas as dificuldades vivenciadas por ela.

À minha namorada Anakelle pela paciência, companheirismo, pelo entendimento das ausências necessárias e por sempre cuidar de mim em todos aspectos. Agradeço ainda à Dona Cleide e seu Edivaldo por tão bem me acolherem em sua família. Cito aqui poucas de suas qualidades mas lembro a presteza infinita de seu Edivaldo, a paciência e orientações gramaticais valiosas da dona Cleide. Muito obrigado a todos.

A todos os professores do programa por conduzirem tão bem os ensinamentos e que pacientemente sempre atenderam a meus pedidos de ajuda em momentos de dúvida.

Ao professor Dr. Fábio Rocha Barbosa pela primorosa orientação deste trabalho no campo filosófico, estrutural, didático e científico. Suas orientações em sala de aula e neste trabalho trouxeram a mim uma forma diferente de se avaliar uma obra científica, forma esta que nunca havia percebido e que, com carinho, tomei como um novo ponto a ser avaliado em todo trabalho que eu venha a desenvolver ou avaliar.

Ao professor, amigo e chefe Dr. Ricardo de Andrade Lira Rabelo, que desde o tempo de minha graduação contribui para a minha formação técnica, social e científica. Agradeço pelo entendimento das ausências necessárias desde o tempo de minha graduação até agora nos afastamento do ambiente de *labor* para a criação deste trabalho. Agradeço ainda pelo valoroso auxílio científico a mim prestado bem antes do momento da qualificação desta dissertação. Suas contribuições cirúrgicas certamente engrandeceram este trabalho.

À minha amiga Betânia, que tanto me ajudou na secretaria da pós, entendendo sempre meus motivos de atraso, me atendendo sempre com um sorriso no rosto independente das circunstâncias.

Aos meus companheiros de laboratório Jailson e Neto, por sempre compartilharmos de momentos de alegria, aliviando um pouco a carga diária de problemas.

Agradeço ao Eduardo pela amizade iniciada no mestrado, pelos diálogos científicos excepcionais que sempre tivemos, pelos diálogos diversos e por todos os momentos juntos.

Aos meus colegas de trabalho da STI, que pacientemente entenderam minhas ausências para a conclusão desta jornada.

Agradeço ao meu orientador, amigo e mestre prof^o Dr.Aldir Silva Sousa, por todos

os conselhos, pela paciência, por todas as orientações e por toda a confiança que me foi dada desde quando eu ainda pleiteava o programa de mestrado. Agradeço por ser um mestre em todos os aspectos, indo muito além do ambiente acadêmico, sendo sempre um modelo que terei comigo por toda minha existência.

"Quem quer ser campeão não escolhe adversário." (Aldir Silva Sousa)

Resumo

A reconfiguração de sistemas de distribuição consiste na alteração da topologia da rede através do fechamento e abertura de chaves instaladas em pontos estratégicos da rede. Isolamento de faltas, minimização de perdas de potência ativa e balanceamento de cargas entre os alimentadores estão entre os principais objetivos de uma reconfiguração. Esse problema é de difícil resolução devido ao grande número de variáveis envolvidas e das restrições impostas, como o atendimento às leis de Kirchhoff, aos limites de tensão, à radialidade e ao não isolamento de carga. O problema pode ser classificado como um problema de programação não linear inteiro misto (PNLIM) e apresenta o fenômeno de explosão combinatória. Neste trabalho é proposta uma nova abordagem para o tratamento de infactibilidade de soluções em algoritmos evolutivos que resolvem o problema de reconfiguração de sistemas de distribuição radial de energia elétrica. Os métodos aproximados são os mais comuns quando se lida com o problema de reconfiguração de sistemas de energia elétrica. Destes, os Algoritmos Evolutivos (AE's) são os mais aplicados e os que apresentaram as melhores soluções. Porém, quando se lida com sistemas de grande porte, há significativa instabilidade na qualidade das soluções encontradas pelo AE. Uma possível causa desta instabilidade se deve ao fato de que, quando se lida com sistemas grande porte, muitas soluções infactíveis são geradas ao longo da busca. Assim, o algoritmo leva muitas gerações para conseguir encontrar soluções factíveis e somente a partir daí, é que o processo de otimização destas realmente ocorre. Porém, mesmo após muitas iterações, não há qualquer garantia que exista ao final da busca qualquer solução factível, principalmente quando se lida com sistemas complexos. Diante desta grave limitação dos AE, propôs-se neste trabalho uma heurística de factibilização para indivíduos da população de AE's com intuito de garantir estabilidade às soluções dadas pelo AE e também para assegurar que, ao final do processo de busca ou a cada geração deste, todas as soluções da população do AE sejam factíveis. Um Algoritmo Genético simples foi utilizado para minimização das perdas de potência ativa, enquanto que o algoritmo NSGA-II foi empregado na otimização de dois objetivos: redução do número de manobras e redução das perdas de potência ativa. Ao serem realizados experimentos computacionais em sistemas de pequeno, médio e grande porte verificou-se que o método proposto pôde encontrar menores perdas de potência média para os sistemas de pequeno e médio porte. Obteve ainda a menor perda de potência mínima em todos os cenários. Graças ao baixo esforço computacional que o método como um todo demanda, pode-se admitir ainda a sua utilização em tempo real.

Palavras-chaves: Algoritmo Evolutivo. Heurística. Multiobjetivo. NSGA-II. Reconfiguração. Sistema de Distribuição Radial.

Abstract

The reconfiguration of distribution systems consists of changing the network topology by closing and opening keys installed at strategic points of the network. Fault isolation, minimization of active power losses and load balancing between feeders are among the main objectives of a reconfiguration. This problem is difficult to solve due to the large number of variables involved and the restrictions imposed, such as compliance with Kirchhoff laws, voltage limits, radiality and non-isolation of load. The problem can be classified as a mixed integer nonlinear programming problem (PNLIM) and presents the phenomenon of combinatorial explosion. This work proposes a new approach for the treatment of infeasibility of solutions in evolutionary algorithms that solve the problem of reconfiguration of radial electrical distribution systems. Approximate methods are most common when dealing with the problem of reconfiguring power systems. Of these, Evolutionary Algorithms (AE's) are the most applied and the ones that presented the best solutions. However, when dealing with large systems, there is significant instability in the quality of the solutions found by AE. One possible cause of this instability is that, when dealing with large systems, many unworkable solutions are generated throughout the search. Thus, the algorithm takes many generations to find feasible solutions and only then does the optimization process actually take place. However, even after many iterations, there is no guarantee that any feasible solution will exist at the end of the search, especially when dealing with complex systems. Given this serious limitation of the AE, this work proposed a heuristic of feasibility for individuals of the population of AE in order to guarantee stability to the solutions given by the AE and also to ensure that at the end of the search process or each generation of it. all solutions of the EA population are feasible. A simple Genetic Algorithm was used to minimize active power losses, while the NSGA-II algorithm was used to optimize two objectives: reduction of the number of maneuvers and reduction of active power losses. By conducting computational experiments on small, medium and large systems it was found that the proposed method could find lower average power losses for small and medium systems. It also achieved the smallest minimum power loss in all scenarios. Thanks to the low computational effort that the method as a whole demands, its use in real time can still be admitted.

Keywords: Evolutive Algorithm. Heuristic. Multi objective. NSGA-II. Reconfiguration. Radial Distribution System.

Lista de ilustrações

Figura 1 –	Sistema hipotético malhado ou em anel	10
Figura 2 –	Sistema hipotético radial com chave aberta em destaque	11
Figura 3 –	Trecho hipotético de um SDR	12
Figura 4 –	SDR de 33 barras, topologia inicial	19
Figura 5 –	SDR de 33 barras após reconfiguração	20
Figura 6 –	Perfil de tensão do sistema de 33 barras antes e após reconfiguração	
	conforme demonstrado em (OLIVEIRA, 2011). \ldots	20
Figura 7 $-$	Grafo representando um sistema hipotético.	26
Figura 8 $-$	Representação binária factível	26
Figura 9 $-$	(a) Grafo representando um sistema hipotético com ilhamento e ciclos.	
	(b) Vetor binário dos <i>status</i> das chaves	27
Figura 10 –	(a) Representação unifilar de um SD. (b) Representação por meio de	
	grafo	28
Figura 11 –	${\rm SDR}$ com seu grafo e suas representações por lista de adjacências (a) e	
	matricial (b).	28
Figura 12 –	Espaço de busca fictício.	31
Figura 13 –	Grafo representando um sistema de 9 barras em mallha e com uma	
	barra ilhada.	33
Figura 14 –	Grafo representando um sistema de 9 barras após factibilização	34
Figura 15 –	Etapas de factibilização da heurística proposta.	35
Figura 16 –	Tempos computacionais para os FP de Newton-Raphson, tolerância 10^{-6} .	38
Figura 17 –	Fronteiras Pareto para o sistema de 33 barras utilizando a heurística	
	proposta.	45
Figura 18 –	Fronteiras Pareto para o sistema de 33 barras utilizando Kruskal	45
Figura 19 –	Fronteiras Pareto para o sistema de 33 barras utilizando penalização.	45
Figura 20 –	Fronteiras Pareto para o sistema de 84 barras utilizando a heurística	
	proposta.	46
Figura 21 –	Fronteiras Pareto para o sistema de 84 barras utilizando Kruskal	46
Figura 22 –	Fronteiras Pareto para o sistema de 84 barras utilizando penalização.	47
Figura 23 –	Fronteiras Pareto para o sistema de 417 barras utilizando a heurística	
	proposta.	47
Figura 24 –	Fronteiras Pareto para o sistema de 417 barras utilizando Kruskal	48
Figura 25 –	Fronteiras Pareto para o sistema de 417 barras utilizando penalização.	48
Figura 26 –	Etapas de um Algoritmo Genético.	62

Lista de tabelas

Tabela 1 – Representação binária das chaves de um SDR	24	
Tabela 2 – Avaliação de fitness máximo. . <th .<="" td="" th<=""><td>40</td></th>	<td>40</td>	40
Tabela 3 – Avaliação de fitness mínimo	40	
Tabela 4 – Reconfiguração do SDR de 33 barras	40	
Tabela 5 – Reconfiguração do SDR de 84 barras	41	
Tabela 6 – Avaliação de fitness médio. .	41	
Tabela 7 – Avaliação do desvio padrão de fitness. \ldots \ldots \ldots \ldots	41	
Tabela 8 – Resumo de avaliações de fitness.	42	
Tabela 9 – Tempo máximo AG	42	
Tabela 10 – Tempo mínimo AG. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	43	
Tabela 11 – Tempo médio AG.	43	
Tabela 12 – Desvio padrão AG	43	
Tabela 13 – Tempo mínimo NSGA-II. 	49	
Tabela 14 – Tempo médio NSGA-II.	49	
Tabela 15 – Tempo máximo NSGA-II	49	
Tabela 16 – Desvio padrão NSGA-II	50	

Lista de abreviaturas e siglas

AE

Algoritmo Evolutivo AG Algoritmo Genético Simples BFS Backward Forward Sweep Depth First Search DFS \mathbf{FP} Fluxo de Potência GD Geração Distribuída HVHypervolume MOEA Multi-Objective Evolutionary Algorithm MOOP Multi-Objective Optimization Problem MST Minimum Spanning Tree NA Normalmente Aberta NF Normalmente Fechada NSGA-II Non-Dominated Sorting Algorithm-II PNLIM Problema Não-Linear Inteiro Misto PRODIST Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional RSDR Reconfiguração em Sistema de Distribuição Radial SDSistema de Distribuição SDR Sistema de Distribuição Radial SEP Sistema Elétrico de Potência

Sumário

	-	
1	INTRODUÇÃO	1
1.1	Reconfiguração de Redes de Distribuição	2
1.2	Objetivos	5
1.3	Contribuição	6
1.4	Publicações	6
1.5	Estrutura do Trabalho	7
2	FLUXO DE POTÊNCIA EM SISTEMAS DE DISTRIBUIÇÃO RA-	
	DIAL	9
2.1	Visão Geral	9
2.2	Método de Shirmohammadi	11
3	RECONFIGURAÇÃO DE SISTEMAS DE DISTRIBUIÇÃO RADIAL	17
3.1	Visão geral do problema	17
3.2	Topologia	18
4	TRAMENTO DE SOLUÇÕES INFACTÍVEIS	23
4.1	Aspectos iniciais	23
4.2	Representação computacional	24
4.3	Abordagem de Penalização	28
4.4	Abordagem de substituição de soluções pelo Algoritmo de Kruskal .	30
5	HEURÍSTICA DE FACTIBILIZAÇÃO PROPOSTA	31
5.1	Questão norteadora	31
5.2	Algoritmo de Factibilização	33
5.3	Exemplo de aplicação da heurística	34
5.4	Complexidade do algoritmo	36
5.5	Considerações Finais do Capítulo	36
6	SIMULAÇÕES E RESULTADOS	37
6.1	Métricas de avaliação	37
6.2	Fluxo de Potência	38
6.3	AE Monoobjetivo	39
6.4	AE Multiobjetivo	44
6.5	Considerações Finais do Capítulo	50
7	CONCLUSÕES	51

REFERÊNCIAS	53
APÊNDICES	59
APÊNDICE A – ALGORITMOS EVOLUTIVOS	61
APÊNDICE B – SISTEMA DE 33 BARRAS	65
APÊNDICE C – SISTEMA DE 84 BARRAS	67
APÊNDICE D – SISTEMA DE 136 BARRAS	71
APÊNDICE E – SISTEMA DE 417 BARRAS	77

1 Introdução

O Sistema Elétrico de Potência (SEP) têm como finalidade geral o fornecimento de energia elétrica de qualidade para o consumidor, de pequeno, médio ou grande porte (KAGAN; OLIVEIRA; ROBBA, 2005). Independentemente do nível de sua entrega: seja ela na geração, transmissão, distribuição e/ou comercialização. Mesmo que as fontes de energia envolvidas sejam diferentes.

Para cumprir com sua função precípua de fornecer energia elétrica a diferentes tipos de consumidores no momento em que for solicitada, o SEP necessita de uma estrutura bem definida, constituída por centrais elétricas, subestações de transformação (elevação ou rebaixamento de tensão), interconectadas entre si por meio de linhas de transmissão ou de distribuição. Tais elementos, trabalham de forma coordenada para gerar, transmitir e distribuir energia elétrica aos consumidores. Neste contexto, o SEP pode ser subdividido em três grandes blocos (KAGAN; OLIVEIRA; ROBBA, 2005):

- Geração: responsável pela conversão de determinada fonte de energia em energia elétrica. No Brasil, a geração de energia elétrica ocorre principalmente nas usinas hidrelétricas, podendo ser produzida também em usinas solares, eólicas, termoelétricas, nucleares entre outras;
- **Transmissão:** responsável pelo transporte da energia elétrica dos centros de produção até o consumidor, podendo ainda interligar sistemas elétricos entre si;
- **Distribuição:** distribui a energia elétrica, advinda do sistema de transmissão, para o consumidor final, seja ele de grande (subtransmissão), médio (distribuição primária) ou pequeno porte (distribuição secundária).

O Sistema de Distribuição (SD) primária opera, geralmente, de forma radial devido a fatores econômicos e operacionais. A característica de radialidade de um SD possibilita a transferência de blocos de carga entre circuitos, para o atendimento da operação do SEP em condições de contingência, devido à manutenção corretiva ou preventiva (KAGAN; OLIVEIRA; ROBBA, 2005). Essa transferência de carga é possível devido à existência de chaves seccionadoras que podem operar nas condições: (*i*) chaves normalmente fechadas (NF); (*ii*) chaves normalmente abertas (NA).

Além de possibilitar a transferência de blocos de cargas entre circuitos, a alteração das chaves seccionadoras existentes em um Sistema de Distribuição Radial (SDR) pode ser utilizada para se alcançar outros objetivos, como a priorização de cargas de consumidores, melhora do perfil de tensão, etc. Dá-se o nome de reconfiguração à alteração do estado das chaves de um SD resultando em uma nova topologia de rede.

Este trabalho lida com os Sistemas de Distribuição tipicamente radiais, mais especificamente com o problema de Reconfiguração em Sistemas de Distribuição Radial (RSDR).

1.1 Reconfiguração de Redes de Distribuição

O marco regulatório do setor energético no Brasil proporcionou uma maior competitividade, além de tornar o SEP mais complexo. Este aumento da complexidade decorrente da regulação do setor elétrico ocorreu devido a cenários antes inexistentes (ANEEL, 2018):

- Passou a existir um maior rigor no controle da qualidade da energia elétrica fornecida;
- Ocorreu a reestruturação, desverticalização e privatização do mercado;
- Cenários de Geração Distribuída (GD) e sistemas de armazenamento de energia foram criados;
- O consumidor deixou de ter o papel apenas de elemento passivo do sistema, agora sendo também um elemento ativo, desde a troca de informações com a concessionária até poder injetar potência de volta para a rede;
- Houve um aumento da demanda energética seja do ponto de vista do crescimento vertical, dado ao aumento do número de consumidores, ou do horizontal, dado ao aumento de cargas dentro das instalações dos consumidores.

Esses fatores implicam no aumento da complexidade para a operação, atingindo também a expansão do SEP. Devido a isso, e a possíveis outros fatores externos, como desastres naturais, falha de operação, falhas de equipamentos, entre outros, o planejamento e a operação do SEP passaram a exigir mais responsabilidade por parte dos especialistas. Este maior cuidado também está vinculado ao maior controle e fiscalização da qualidade da energia elétrica fornecida ao consumidor, e que quando não atendida pode acarretar desde ressarcimentos de danos elétricos aos consumidores até multas para a concessionária.

No âmbito da distribuição, o PRODIST (Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional) (PRODIST, 2018), surge para normatizar e padronizar as atividades técnicas relacionadas ao funcionamento e desempenho dos sistemas de distribuição de energia elétrica, no Brasil. Em seu módulo I, encontra-se como um de seus objetivos principais, "garantir que os sistemas de distribuição operem com segurança, eficiência, qualidade e confiabilidade". Alguns fatores podem impossibilitar o alcance deste objetivo em destaque: subestações sobrecarregadas, equipamentos ultrapassados, perdas não técnicas, entre outros. Neste contexto, a natureza radial dos SD pode propocionar uma forma de contornar/amenizar essas e outras dificuldades por meio da RSDR.

Sabe-se que, uma vez que o sistema está operando em regime permanente, é desejável aumentar sua eficiência e diminuir o custo operacional. Uma das formas de se obter este resultado é através da operação do sistema em estado de mínimas perdas. Neste estado, o SD apresenta um melhor perfil de tensão ao longo dos alimentadores, caracterizado por uma melhor distribuição do fluxo de potência nas linhas, o que influencia diretamente no aumento da vida útil dos equipamentos instalados na rede (CAVELLUCCI, 1998). Desta forma, com a redução das perdas de potência do sistema, há um incremento da qualidade da energia elétrica fornecida ao consumidor. Na literatura, a RSDR apresenta-se como uma alternativa para se reduzir as perdas de potência de um SD (BARAN; WU, 1989; CIVANLAR et al., 1988; SHIRMOHAMMADI; HONG, 1989; SU; CHANG; CHIOU, 2005; RAO et al., 2012).

O problema de RSDR altera a topologia da rede com o intuito de alcançar determinado(s) objetivo(s), como a redução de perdas de potência. A RSDR ocorre por meio da abertura e fechamento de chaves em pontos estratégicos, mantendo sempre a característica radial e obedecendo aos limites de tensão definidos pelo PRODIST. A restrição de radialidade dos SDR é imposta com o intuito de reduzir a quantidade e os custos de dispositivos de proteção e manobras ligados à rede elétrica e, principalmente facilitar a operação e proteção do sistema elétrico (PEREIRA, 2000).

Com o desenvolvimento das áreas urbanas e o aumento das redes de distribuição de energia elétrica, a reconfiguração de SDR até então de pequeno porte, passou a necessitar de técnicas computacionais para tanto, deixando de lado o caráter subjetivo da escolha de soluções a serem empregadas. A necessidade do uso dessas técnicas para a resolução do problema de RSDR, é devido ao aumento exponencial da quantidade de soluções possíveis diante de um determinado número de chaves em um SDR.

A RSDR é um Problema Não-Linear Inteiro-Misto (PNLIM) devido à existência de restrições não-lineares e variáveis contínuas e inteiras em seu modelo. A quantidade de soluções possíveis de um determinado SD está relacionada ao seu número de chaves. Desta forma, há a possibilidade da existência de um grande número de topologias que podem ser configuradas por meio da abertura e fechamento das chaves, sendo a exigência de radialidade uma dificuldade adicional. Para um SD com n chaves, existem 2^n topologias de rede possíveis, não necessariamente factíveis. Dada à sua natureza combinatória, encontrar a melhor topologia para determinado objetivo é, muitas vezes, algo que demanda um grande esforço computacional.

Como dito anteriormente, o problema de reconfiguração apresenta uma dificuldade maior à medida que se aumenta o número de chaves de determinado sistema. Para resolver problemas deste tipo, soluções clássicas podem ser utilizadas, no entanto, em alguns casos, esses métodos não fornecem os mínimos/máximos globais, atingindo apenas os mínimos/máximos locais (OLAMAEI; NIKNAM; GHAREHPETIAN, 2008), aparecendo neste contexto, as heurísticas e meta-heurísticas. Heurísticas e meta-heurísticas são as abordagens mais utilizadas na literatura para a resolução do problema de RSDR (SU; CHANG; CHIOU, 2005; WU et al., 2010; RAO; NARASIMHAM; RAMALINGARAJU, 2008; NASIRAGHDAM; JADID, 2012; NIKNAM; FARSANI, 2010; NIKNAM; FARSANI; NAYERIPOUR, 2011; NIKNAM, 2009).

Metaheurísticas populacionais, os Algoritmos Evolutivos (AE's) (BAGLEY, 1967), têm em sua natureza a geração e avaliação de indivíduos (soluções) de uma determinada população (espaço de busca) ao longo de épocas (iterações). Assim como na teoria na qual foi inspirada, a Teoria Evolucionista de Charles Darwin, nos AE's os indivíduos passam pelos processos de seleção, *crossover* e mutação, sendo estes dois últimos denominados operadores genéticos. A ação deste operadores sobre as soluções durante a evolução do algoritmo, pode gerar soluções infactíveis de serem utilizadas no mundo real. Constantes avaliações destas soluções podem gerar atrasos na evolução do algoritmo e um grande esforço computacional na tentativa de fugir de pontos de ótimos locais.

Durante o processo de resolução do problema de RSDR por meio de um AE (mono ou multiobjetivo) há o fenômeno da geração de soluções infactíveis, que podem ser entendidas como uma solução que viola uma ou mais restrições de operação de um SD. Como exemplo de violação de restrição, cita-se a quebra da radialidade do sistema gerando um SD que opera de forma malhada, ou seja, com ciclos. Outra violação de restrição é possibilidade de ilhamento. De forma genérica, uma barra encontra-se ilhada quando não está interligada com nenhuma outra barra energizada do SD.

Algumas heurísticas buscam na penalização uma forma de resolução deste problema, como encontrado em (MA; KNIGHT; PLETT, 2005), a qual penaliza uma solução com base no quanto ela invade uma região inviável no espaço de busca. Em outros casos, a solução infactível é excluída e substituída por uma outra solução factível qualquer (SANTOS; MARTINS, 2018). A proposta deste trabalho é propor uma heurística de factibilização de soluções infactíveis encontradas em AE's que resolvem o problema de RSDR. Tais soluções, quando não tratadas, podem gerar um atraso de tempo computacional na resolução do problema, impossibilitando seu uso em cenários críticos onde o tempo é fator primordial, como na operação. A qualidade das soluções finais fornecidas pelos AE's, que não tratam as soluções inviáveis, podem também gerar um conjunto de soluções de baixa qualidade, gerando perdas de potência ativa maiores em relação às que poderiam ser alcançadas caso as soluções fossem tratadas de forma adequada.

Portanto, uma metodologia que possa evitar de forma eficiente os problemas citados, pode aumentar a qualidade das soluções encontradas pelos AE's com um menor esforço computacional. Desta forma, os AE's utilizados neste trabalho foram divididos em dois grupos:

- Grupo Mono-objetivo G01;
- Grupo Multiobjetivo G02.

A redução de perda de potência ativa foi o objetivo abordado em G01. A justificativa para a criação deste grupo foi que muitos trabalhos na literatura abordam o uso de AE's mono-objetivos, Algoritmo Genético Simples (AG), para a determinação de uma configuração de rede otimizada para se obter as menores perdas de potência ativa de determinado SDR (SHIRMOHAMMADI; HONG, 1989; RAO et al., 2012; CIVANLAR et al., 1988; BARAN; WU, 1989; SU; CHANG; CHIOU, 2005; RAO; NARASIMHAM; RAMALINGARAJU, 2008; BUENO, 2005; AMAN et al., 2013; NIKNAM; FARSANI, 2010). Desta forma, uma avaliação dos resultados envolvendo esta abordagem foi realizada, objetivando analisar as soluções encontradas pela metodologia proposta com outras abordagens já conhecidas da literatura e trabalhadas no Capítulo 4.

Dois objetivos foram avaliados em G02: a redução de perda de potência ativa e a redução do número de manobras. Sabe-se que, diante de um SDR inicialmente com altas perdas de potência ativa, um aumento no número de manobras neste SDR pode gerar uma nova topologia cujas perdas de potência ativa sejam menores que as geradas pela configuração inicial. Entretanto, o aumento de manobras em um chave reduz a sua vida útil. Somado a isto, muitas vezes não se tem disponível a quantidade de equipes necessárias para se realizar o número de manobras adequadas, dentro de determinado período de tempo. Desta forma, é necessário reduzir o número de manobras para se alcançar um determinado objetivo.

A inserção da otimização multiobjetivo é de extrema importância, pois no mundo real quase todos os problemas apresentam objetivos de natureza conflitante. O algoritmo multiobjetivo utilizado para a otimização em G02 foi o NSGA-II (*Nondominated Sorting Genetic Algorithm II*) (DEB et al., 2002), devido à sua eficiência ao lidar com problemas de natureza combinatória (DEB et al., 2000). Para fins de comparação, em G01 e G02, o tratamento de infactibilidade de soluções foi tratado por meio de: (*i*) penalização; (*ii*) substituição de soluções infactíveis por meio do descarte; e (*iii*) factibilização de soluções por meio da heurística proposta.

O cálculo de perdas de potência ativa foi realizado utilizando o método de Shirmohammadi (SHIRMOHAMMADI et al., 1988). A redução de perda de potência ativa será tratada na Seção 2.2 deste trabalho, inicialmente pode-se citar que as perdas envolvidas em um SDR podem ser calculadas por meio do estudo do Fluxo de Potência (FP), também conhecido como fluxo de carga. Desta forma, a heurística de factibilização proposta objetiva melhorias em dois pontos: (i) redução do tempo computacional para resolução do problema de RSDR por meio de AE's e (ii) melhoria da qualidade das soluções alcançadas.

1.2 Objetivos

O objetivo principal deste trabalho é propor um algoritmo heurístico de factibilização de possíveis soluções inviáveis, que podem ser obtidas a partir de Algoritmos Evolutivos aplicados na resolução do problema de reconfiguração de sistemas de distribuição de energia elétrica.

Com o intuito de alcançar o objetivo geral, faz-se necessária a realização dos seguintes objetivos específicos:

- Desenvolver um algoritmo de fluxo de carga de baixo custo computacional e específico para Sistemas de Distribuição Radial (CHENG; SHIRMOHAMMADI, 1995);
- Definir uma representação computacional dos sistemas testados por meio de grafos;
- Implementar um Algoritmo Evolutivo mono e um multiobjetivo voltados para a reconfiguração de redes de distribuição radial;
- Modelar uma técnica de penalização e a de substituição de soluções infactíveis por meio do algoritmo de Kruskal;
- Avaliar por meio de simulações computacionais o desempenho da heurística proposta em termos de: tempo computacional e qualidade das soluções alcançadas nos cenários mono e multiobjetivo;
- Analisar e comparar os resultados encontrados nas simulações com outras metodologias de tratamento de infactibilidade já propostas na literatura.

1.3 Contribuição

Estabelecimento de uma heurística de factibilização de indivíduos em AE's que tratam o problema de reconfiguração em SDR.

1.4 Publicações

 Artigo aceito no Encontro Unificado de Computação (ENUCOMP) intitulado Heurística para Geração de Configurações Radiais Não Ilhadas em Sistemas de Distribuição. Disponível no documento eletrônico https://bit.ly/2Nscktb, páginas 339 a 345;

- Artigo aceito em conferência internacional (13th IEEE International Conference on Industry Applications), também disponível no seguinte endereço eletrônico: https://ieeexplore.ieee.org/document/8627168. Sendo este um pré-requisito para a pré- defesa e defesa de mestrado;
- 3. Artigo aceito no 14° Simpósio Brasileiro de Automação Inteligente (SBAI) intitulado Multiobjective optimization using NSGA-II adopting a new approach for reconfiguration in power systems distribution.

1.5 Estrutura do Trabalho

Além deste capítulo, este trabalho está organizado da seguinte forma:

O Capítulo 2 trata os aspectos relacionados aos cálculos do fluxo de potência. Discutiu-se o algoritmo de Fluxo de Carga de Shirmohammadi, proposto em Cheng e Shirmohammadi (1995), voltado para Sistemas de Distribuição Radial.

O Capítulo 3 trata o problema de Reconfiguração de Redes de Distribuição. São abordados os aspectos da topologia de rede e as implicações em sua alteração.

O Capítulo 4 trata a representação computacional do problema de reconfiguração. São detalhadas ainda as metodologias de penalização e substituição de solução inviável por meio do algoritmo de Kruskal.

O Capítulo 5 trata a heurística de factibilização proposta nesta dissertação é explicada. A complexidade da metodologia também pode ser encontrada neste capítulo.

No Capítulo 6 é apresentada uma avaliação de desempenho que compara o algoritmo proposto com outros estratégias de tratamento de soluções infactíveis. A avaliação foi realizada em três Sistemas de Distribuição distintos com: 33, 84 e 417 barras.

O Apêndice A traz alguns conceitos sobre Algoritmos Evolutivos necessários para o entendimento de etapas importantes deste trabalho.

2 Fluxo de Potência em Sistemas de Distribuição Radial

O cálculo do fluxo de potência (ou fluxo de carga) em uma rede de energia elétrica consiste essencialmente na determinação do estado da rede, da distribuição dos fluxos e de algumas outras grandezas de interesse (MONTICELLI, 1983). Neste tipo de problema, a modelagem do sistema é estática, significando que a rede é representada por um conjunto de equações e inequações algébricas (MONTICELLI, 1983). Assim como um profissional de saúde verifica a pressão sanguínea, os batimentos cardíacos e um outro montante de sinais necessários para finalizar o diagnóstico, assim também o é com um SEP, considerando que este precisa ser analisado para que determinadas características e/ou comportamentos possam ser diagnosticados de forma correta. Portanto, neste contexto, o fluxo de carga apresenta-se como uma forma de se determinar características necessárias para o desenvolvimento deste trabalho.

Neste capítulo são apresentados os principais aspectos do Fluxo de Potência em Sistemas de Distribuição Radial. A Seção 2.1 apresenta uma visão geral sobre o cálculo de fluxo de potência. Na Seção 2.2 é apresentado o algoritmo de fluxo de potência de Shirmohammadi (SHIRMOHAMMADI et al., 1988).

2.1 Visão Geral

De uma forma geral, a determinação do estado de uma rede é definida pelo cálculo do fluxo de potência. De uma forma mais estendida, segundo (KAGAN; OLIVEIRA; ROBBA, 2005) o fluxo de potência resolve um circuito elétrico que representa uma determinada rede, para o qual se dispõe da topologia, com as constantes elétricas de seus elementos, das demandas das cargas e das tensões dos geradores que o excitam. Ainda segundo (KAGAN; OLIVEIRA; ROBBA, 2005) o estudo de fluxo de potência, que permite a simulação da operação de uma rede, tem por finalidade:

- O cálculo da corrente e da potência, que fluem pelos trechos da rede, permitindo a verificação da obediência aos seus limites de carregamento;
- O cálculo das perdas, em termos de potência e energia;
- O cálculo das tensões nas barras de rede, permitindo a verificação do atendimento dos níveis de tensão tecnicamente corretos;

• De uma forma geral e essencialmente, determinar as tensões, módulos e ângulos, em todas as barras ou nós do sistema, para uma determinada condição de geração e carga (CARVALHO; BELATI; COSTA, 2005).

Inúmeras constatações decorrentes da análise de um sistema de energia elétrica por meio do fluxo de carga podem ser verificadas. Segundo Cavellucci (1998), um sistema que opera em uma configuração cujas perdas são mínimas é de fundamental importância tanto pelo aspecto econômico como da qualidade de fornecimento. A configuração de mínimas perdas caracteriza uma melhor distribuição do fluxo de potência nos circuitos da rede, apresentando ainda como consequência, uma maior vida útil dos equipamentos envolvidos.

Neste sentido, o cálculo do fluxo de potência apresenta-se como uma importante ferramenta em procedimentos de melhoria das condições operacionais de uma rede elétrica, sendo imprescindível uma modelagem matemática cujos resultados reflitam os encontrados no mundo real. Torna-se importante, então, uma modelagem que o problema deva identificar o seu escopo e o aspecto particular a ser explicitamente considerado na sua formulação, bem como se fazer suposições simplificadoras adequadas para que o modelo resultante esteja equilibrado entre representabilidade e tratabilidade matemática (BAZARAA; SHE-RALI; SHETTY, 2013). Como expresso em (BAZARAA; SHERALI; SHETTY, 2013) um modelo excessivamente complicado deve ser evitado, pois isso o torna computacionalmente impraticável. Desta forma, adotou-se o cálculo do fluxo de carga básico para determinação das perdas de potência ativa e do perfil de tensão das redes simuladas neste trabalho. O destaque é importante pois como é bem conhecido dos usuários de *softwares* comerciais, a maioria dos algoritmos de fluxo de carga utilizados nas concessionárias de energia é baseada no método de Newton-Raphson e em suas variantes, todos desenvolvidos especificamente para sistemas de transmissão.

Para Elgerd (1978), os sistemas de transmissão não somente lidam com os maiores blocos de potência, como também interligam as estações geradoras e todos os pontos de maior carga do sistema, podendo a energia ser conduzida, geralmente em qualquer direção, nas várias malhas do sistema, ilustrado na Figura 1. Carvalho (2006) relata que algumas aproximações podem ser feitas para o cálculo do fluxo de potência em sistemas de transmissão, o que permite o desacoplamento entre a potência ativa, a potência reativa e do módulo e ângulo de tensão.

Pode-se visualizar na Figura 2 um SD tipicamente radial, além da topologia diferente em relação ao sistema de transmissão, os sistemas de distribuição apresentam uma outra característica muito importante e que exclui com respaldo o uso das técnicas comumente utilizadas pelas concessionárias, a relação resistência/reatância (R/X). A elevada relação R/X em sistemas de distribuição exclui as técnicas de resolução de fluxo de potência voltadas para sistemas de transmissão.

Figura 1 – Sistema hipotético malhado ou em anel.

Fonte: Autoria própria.

Figura 2 – Sistema hipotético radial com chave aberta em destaque.

Fonte: Autoria própria.

Segundo Carvalho (2006), os algoritmos de fluxo de carga voltados para sistemas de distribuição podem ser divididos em três grupos:

- Métodos que se baseiam na redução das redes (cargas equivalentes);
- Métodos que se baseiam no processo de varredura Backward/Forward Sweep.;
- Métodos baseados na técnica de Newton-Raphson.

O algoritmo de cálculo de fluxo de carga de Shirmohammadi (SHIRMOHAMMADI et al., 1988) foi usado neste trabalho dadas as seguintes características:

- Apresenta tempos robustos e eficientes;
- É capaz de resolver SD radias e fracamente malhados com até milhares de seções de linhas (ramificações) e nós (barramentos);
- A resolução do fluxo de potência pelo método de Newton Raphson para redes de distribuição é, na maioria das vezes, mal sucedida, pois diverge para a maioria das redes estudadas;

• Poucas iterações são necessárias para a convergência do método.

2.2 Método de Shirmohammadi

Somente após vinte e um anos do primeiro trabalho de Fluxo de Carga voltado para Sistemas de Distribuição proposto por (BERG; HAWKINS; PLEINES, 1967) e após onze anos do primeiro trabalho envolvendo Fluxo de Carga em redes radias desenvolvido por (KERSTING; MENDIVE, 1976) foi que surgiu o método de resolução de Fluxo de Carga voltado para SDR de Shirmohammadi (SHIRMOHAMMADI et al., 1988).

Para efeito de comparação, nos anos de 1950 já se utiliza o método de Gauss-Seidel para resolução do Fluxo de Carga e na década de 1960 o método de Newton-Raphson (TINNEY; HART, 1967). Segundo Carvalho (2006) a preocupação mais comum nas mais de duas décadas que se antecederam ao desenvolvimento de métodos de Fluxo de Carga para SDR's, era a resolução dos problemas dos sistemas de transmissão. Carvalho (2006) relata ainda que somente após o aparecimento de cargas sensíveis com a variação de tensão foi que os SDR's passaram a ser estudados de forma mais rigorosa.

2.2.1 Modelagem do Problema

A Figura 3 ilustra os elementos de um trecho entre duas barras de um SDR. As definições das equações que se sucedem utilizam a referida ilustração. Os termos nó e barra são equivalentes e podem ser utilizados de forma alternada durante este estudo.

Figura 3 – Trecho hipotético de um SDR.

Fonte: Autoria própria.

Os elementos encontrados na Figura 3 são:

- $k \in m$ representam as barras do trecho km;
- $V_k \in V_m$ representam a tensão complexa das barras $k \in m$ respectivamente;
- V_{kr} e V_{mr} representam a parte real da tensão complexa nas barras $k \in m$ respectivamente, ou seja, a magnitude de tensão;
- V_{ki} e V_{mi} representam a parte imaginária da tensão complexa nas barras $k \in m$ respectivamente, ou seja, o ângulo de fase;
- I_{km} representa a corrente complexa na linha km;
- I_{kmr} representa a parte real da corrente complexa na linha km;
- I_{kmi} representa a parte imaginária da corrente complexa na linha km;
- Z_{km} representa a impedância complexa da linha km;
- R_{km} representa a resistência da linha km, ou seja, a parte real de Z_{km} ;
- X_{km} representa a reatância da linha km, ou seja, a parte imaginária de Z_{km} ;
- S_k e S_m representam a injeção de potência complexa líquida nas barras $k \in m$ respectivamente;
- P_k e P_m representam a injeção de potência ativa líquida nas barras $k \in m$ respectivamente;
- $Q_k \in Q_m$ representam a injeção de potência reativa líquida nas barras $k \in m$ respectivamente.

No método de Shirmohammadi pode-se encontrar o conceito de *flat start*, onde se define inicialmente uma magnitude de tensão fixa para todas as barras do sistema. No *flat start* é comum o uso de um valor igual ou muito próximo ao da barra de referência(também conhecida como barra *slack* ou barra $V\theta$). Neste trabalho utilizou-se o valor de 1.0 p.u (mesmo valor da barra de referência).

Após o *flat start*, o algoritmo segue as 03 (três) etapas a seguir:

- 1. Cálculo da corrente nodal;
- 2. Backward sweep;
- 3. Forward sweep.

As etapas 1, 2 e 3 são repetidas até que a convergência seja atingida.

2.2.2 Cálculo da corrente nodal

Temos na barra k os dados de tensão na forma $V_k = V_{kr} + jV_{ki}$ e a injeção de potência líquida na forma $S_k = P_k + jQ_k$. Nesta etapa calcula-se a corrente de carga no nó k.

Tem-se:

$$S_k = P_k + jQ_k$$

$$V_k = V_{kr} + jV_{ki}$$
(2.1)

A corrente absorvida pela carga k pode ser calculado como:

$$S_{k} = V_{k}I_{k} \to I_{k} = \frac{P_{k} + jQ_{k}}{V_{kr} + jV_{ki}} = \frac{P_{k} + jQ_{k}}{V_{kr} + jV_{ki}} \cdot \frac{V_{kr} - jV_{ki}}{V_{kr} - jV_{ki}}$$
(2.2)

$$I_k = \frac{(P_k + jQ_k)(V_{kr} - jV_{ki})}{V_{kr}^2 + V_{ki}^2} = \frac{(P_k V_{kr} + Q_k V_{ki}) - j(P_k V_{ki} - Q_k V_{kr})}{V_{kr}^2 + V_{ki}^2}$$
(2.3)

Como $I_k = I_{kr} + I_{ki}$ separam-se as partes real e imaginária da corrente absorvida na barra k encontrando-se:

$$I_{kr} = \frac{(P_k V_{kr} + Q_k V_{ki})}{V_{kr}^2 + V_{ki}^2}$$
(2.4)

$$I_{ki} = \frac{(P_k V_{ki} - Q_k V_{ki})}{V_{kr}^2 + V_{kr}^2}$$
(2.5)

2.2.3 Cálculo da corrente nos ramos - Backward sweep

O cálculo das correntes nos ramos é dado por uma soma simples na forma:

$$I_{km} = I_m + \sum_{\omega \in \Omega} I_{m\omega} \tag{2.6}$$

Da Equação 2.6 temos:

- I_m representa a corrente da carga na barra m;
- ω representa uma barra pertencente ao conjunto de barras Ω ligadas à barra m;
- $I_{m\omega}$ representa a corrente na linha que interliga a barra m à barra ω .

2.2.4 Cálculo da tensão nodal - Forward sweep

Nesta etapa são conhecidas as tensões da barra k na forma $V_k = V_{kr} + jV_{ki}$, e a corrente do ramo km é expressa como $I_{km} = I_{kmr} + jI_{kmi}$.

Da Figura 3 tem-se que:

$$I_{km} = I_{kmr} + jI_{kmi} \tag{2.7}$$

Por definição tem-se que:

$$V_{k} = V_{kr} + jV_{ki} = V_{m} + (R_{km} + jX_{km})(I_{kmr} + jI_{kmi})$$

$$V_{kr} + jV_{ki} = V_{mr} + jV_{mi} + (R_{km}I_{kmr} - X_{km}I_{kmi}) + j(X_{km}I_{kmr} + R_{km}I_{kmi})$$
(2.8)

Separando as partes real e imaginária tem-se:

$$V_{mr} = V_{kr} - R_{km}I_{kmr} + X_{km}I_{kmi}$$
(2.9)

$$V_{mi} = V_{ki} - R_{km}I_{kmi} - X_{km}I_{kmr}$$
(2.10)

2.2.5 Cálculo das perdas

As perdas nas linhas do sistema podem ser deduzidas a partir das equações anteriores. As perdas no trecho km podem ser representadas pela Equação 2.11, p denota a perda:

$$S_{km} = P_{kmp} + jQ_{kmp} = \Delta V_{km}I_{km} = (R_{km} + jX_{km})I_{km}I_{km} \to (R_{km} + jX_{km})I_{km}^2 \quad (2.11)$$

Separando as perdas ativas das reativas da Equação 2.11:

$$P_{kmp} = R_{km} I_{km}^2 \tag{2.12}$$

$$Q_{kmp} = X_{km} I_{km}^2 \tag{2.13}$$

Generalizando, as perdas ativas e reativas totais do sistema podem ser expressas como:

$$P_{total} = \sum_{(k,m\in\Omega)} R_{km} I_{km}^2$$
(2.14)

$$Q_{total} = \sum_{(k,m\in\Omega)} X_{km} I_{km}^2 \tag{2.15}$$

Com Ω representando todas as barras do sistema.

Esboça-se, no Algoritmo 1, o cálculo do Fluxo de Potência utilizando o método de Shirmohammadi.

Algoritmo	1:	Algoritmo	Backward	Forward	Sweep.
-----------	----	-----------	----------	---------	--------

1	Fixar as tensões nas barras <i>(flat start)</i> ;	
	/* Inicializar o contador de iterações	*/
2	it = 0;	
3	$it_{max} = 100;$	
4	$\epsilon = 10^{-6} ;$	
5	$\Delta perdas = +\infty;$	
6	while $(\Delta perdas > \epsilon) \parallel (it_{max} > it) \mathbf{do}$	
7	A partir das barras extremas, calcular a corrente nos nós da rede conforme	
	Seção 2.2.2.	
	/* Calcular a corrente nos ramos conforme Seção 2.2.3	*/
8	backward();	
	/* Calcular as tensões nodais conforme Seção 2.2.4	*/
9	forward();	
10	Calcular as perdas ativa totais do sistema conforme Seção 2.2.5.	
11	$\Delta perdas = real(perdas_{it} - perdas_{(it-1)});$	
12	$it \leftarrow it + 1;$	
13	$perdas_{it} = perdas_{(it-1)};$	
14	end	

Se a parte real ou imaginária (potência ativa ou reativa) de qualquer um dos mismatches calculados for maior que o critério de parada ϵ , uma nova iteração deve ser realizada até que a convergência seja alcançada (CHENG; SHIRMOHAMMADI, 1995). Na linha 11 do Algoritmo 1 utilizou-se a avaliação da parte real, ou seja, a perda de potência ativa. Os critérios de parada utilizados pelo Algoritmo 1 foram: (i) A tolerância, linha 4; (ii) O máximo de iterações, linha 3.

3 Reconfiguração de Sistemas de Distribuição Radial

Este capítulo apresenta uma visão geral do problema de RSDR na Seção 3.1 e descreve os principais elementos da topologia de um SDR na Seção 3.2.

3.1 Visão geral do problema

Um SDR apresenta uma configuração de chaves NA e NF que proporcionam a alteração de sua topologia para atender um determinado objetivo. As manobras em um SDR caracterizam-se pela abertura ou fechamento de chaves. Alguns objetivos quando se trata da RSDR podem ser vistos a seguir:

- Redução de perdas técnicas;
- Priorização de cargas;
- Redistribuição de cargas entre alimentadores;
- Manutenção de equipamentos;
- Isolamento de defeitos.

Situações emergenciais também podem exigir uma reconfiguração de um SDR, sendo que as manobras podem ser necessárias para a retomada do sistema a um estado de operação normal. Ainda que as manobras possam resolver uma infinidade de problemas de um SDR, estas não podem ser utilizadas de forma indiscriminada por algnus motivos, entre eles:

- Redução da vida útil dos equipamentos a cada manobra;
- Disponibilidade de equipe para realizar a manobra em campo (recursos humanos);
- Recursos financeiros.

Para (SAU, 2016) a continuidade no fornecimento de energia elétrica é fundamental para os consumidores, o que justifica as exigências feitas pelas agências reguladoras em todo o mundo. Índices de qualidade e confiabilidade ruins podem denegrir a imagem das empresas distribuidoras e impactar negativamente o faturamento delas. Assim, é do interesse das distribuidoras de energia elétrica implantar metodologias que resultem na melhoria dos seus indicadores.

Pereira (2000) relata que as perdas técnicas de potência são inerentes ao processo de geração, transmissão e distribuição de energia elétrica e devem ser minimizadas para garantir maior eficiência do sistema. Na distribuição, em que as perdas técnicas se dão pelo efeito Joule, as concessionárias adotam diversas ações para minimizá-las, dentre as quais, a reconfiguração das redes tem se tornado bastante atrativa por ser de baixo custo.

Os sistemas de distribuição de energia elétrica são, na maioria dos casos, configurados radialmente (CAVELLUCCI, 1998; LORENZETI, 2004; MAGALHAES, 2007; BUENO, 2005; CASTRO JUNIOR, 1985) evitando assim, problemas com a coordenação da proteção e atenuação de correntes de curto-circuito. No entanto, a estrutura radial pode resultar em problemas do ponto de vista operacional pois não garante alternativas de fornecimento de energia em situações de contingências ou sobrecargas, nas quais seriam necessárias manobras de isolamento do defeito e corte de carga, com provável ilhamento de barras (CARDOSO, 2016).

3.2 Topologia

Existe uma série de topologias que podem ser encontradas em SD, mais detalhes sobre cada uma podem ser encontrados em (KAGAN; OLIVEIRA; ROBBA, 2005). Os SDR's operam com chaves NA e NF que por meio da alteração de seus estados(manobras) podem alteram o caminho percorrido pela corrente elétrica. Desta forma, a realização de manobras em um SD altera sua topologia.

Estas topologias recebem o nome de redes com recurso ou socorro (KAGAN; OLIVEIRA; ROBBA, 2005) e são comumente encontrada em redes primárias aéreas, geralmente encontradas em áreas que demandem maior necessidade de carga ou requeiram maior grau de confiabilidade devido às suas singularidades (hospitais, região de *datacenters*, centros de controle de ferrovias, etc.). A Figura 4 representa um dos sistemas simulados neste trabalho originalmente trabalhado por (BARAN; WU, 1989). Alguns pontos importantes podem ser destacados:

- A letra S em destaque representa a subestação de distribuição (barra de referência, slack ou vθ). Ela é suprida pela rede de subtransmissão, sendo responsável pela transformação da tensão de subtransmissão para distribuição primária;
- Os segmentos de reta cheios (não pontilhados), posicionados verticalmente e identificados por números representam as barras de carga, também denominadas PQ;
- O trecho entre uma barra e outra representa uma linha de distribuição. As linhas NF são representadas por segmentos de retas cheios, enquanto ao posso que as NA's são

encontradas nos trechos pontilhados. Tem-se aqui 5 linhas NA identificadas pelos números 33, 34, 35, 36 e 37 ao lado de trechos pontilhados;

• Os números destacados por um quadrilátero representam o quão distante aquela barra está da subestação de distribuição, ou seja, representa a quantidade de linhas de distribuição que a corrente deve trafegar até chegar à subestação.

Figura 4 – SDR de 33 barras, topologia inicial.

A Figura 5 representa o sistema de 33 barras após o processo de reconfiguração por meio de manobras das chaves NA e NF. Alguns benefícios da reconfiguração de exemplo que podem citados são:

- Redução das perdas de potência ativa;
- Melhora do perfil de tensão da rede;
- Diminuição da maior quantidade de nós entre as barras terminais e a subestação de distribuição.

Redução de perda de potência ativa é um objetivo muito bem estudado em RSDR (RAO et al., 2012; SHIRMOHAMMADI; HONG, 1989; CIVANLAR et al., 1988; BARAN; WU, 1989; SU; CHANG; CHIOU, 2005; SOUZA, 2013; BUENO, 2005). No exemplo, a topologia inicial era responsável por uma perda de potência ativa de 202.52 kW, após a

Figura 5 – SDR de 33 barras após reconfiguração.

reconfiguração passou a ser de 139.551 kW. O perfil de tensão do sistema exemplo antes e depois sua reconfiguração pode ser visualizado na Figura 6.

De uma maneira geral, os níveis de tensão do sistema apresentaram uma melhora em termos qualitativos. No que diz respeito à redução da maior quantidade de nós entre uma barra terminal e a subestação de distribuição, houve também uma diminuição. A redução desta distância pode ser necessária quando se pretende, por termos de segurança e garantia de disponibilidade de energia elétrica, manter determinada barra mais próxima da subestação distribuidora.

Em termos práticos, quando olhamos para a barra 18 na Figura 4, caso ocorra uma falta nos trechos entre as barras 6 a 18, ou seja, um total de 12 trechos, a barra 18 também teria sua disponibilidade de energia interrompida. Já na Figura 5, a mesma barra 18 aparece com uma redução de 7 nós de distância em relação à subestação. Não podemos afirmar que todas as barras terão a sua distância abreviada em qualquer sistema que se reconfigure.

Como visto anteriormente, a RSDR dá-se por meio da realização manobras, no exemplo tratado, foram necessárias 8 até que se alcançasse a menor perda de potência ativa conhecida deste SD (SOUZA, 2013; OLIVEIRA, 2011; BORGES et al., 2012). O sistema de exemplo é pequeno e apresenta apenas 37 linhas, ainda que de tamanho reduzido, a possibilidade de combinações possíveis para as linhas é de 2^{37} , ou seja, 137.438.953.472

são possíveis combinações, daí a complexidade do problema de RSDR e a necessidade de técnicas eficientes para o seu tratamento.

4 Tramento de Soluções Infactíveis

Neste capítulo são apresentadas as principais abordagens utilizadas no tratamento de soluções infatíveis na resolução de RSDR por meio de AE's. Na Seção 4.1 são apresentados os conceitos básicos de infactibilidade à luz da Teoria dos Grafos. A Seção 4.2 define a representação computacional utilizada neste trabalho. Na Seção 4.3 a estratégia de penalização de soluções infactíveis é explicada. Por fim, a Seção 4.4 apresenta a metodologia de descarte de soluções infactíveis com posterior substituição envolvendo o algoritmo de Kruskal.

4.1 Aspectos iniciais

AE's mono ou multiobjetivos utilizam-se de operadores genéticos para proporcionar a evolução de determinada população, explorando a maior quantidade possível de soluções em um dado espaço de busca. Uma região dita factível, refere-se a um conjunto de soluções de aplicação no mundo real. Entretanto, soluções inviáveis podem ser geradas no processo evolutivo de AE's. Neste contexto, destacam-se duas importantes etapas que podem gerar tais soluções. São elas:

- Cruzamento: dois ou mais indivíduos são selecionados e informações contidas em seus genes são mescladas e usadas para gerar novos descendentes.Segundo Goldberg (1994), esta etapa é responsável por um maior *exploration* do espaço de busca;
- Mutação: existe a possibilidade de alteração dos genes dos novos indivíduos gerados na etapa anterior. Goldberg (1994) relata que a etapa de mutação é capaz de realizar uma busca local, auxiliando a fuga de soluções sub-ótimas, fenômeno denominado exploitation.

Estas etapas, também denominadas operadores genéticos, são imprescindíveis para a evolução de um AE (GOLDBERG, 1994). Assim como a presença dos operadores ajuda os AE's no desenvolvimento da população ao longo de épocas, pode haver uma interferência negativa. Uma alteração na estrutura dos genes de um indivíduo quase sempre ocorre após a ação desses operadores, podendo resultar em soluções infactíveis.

Constantes avaliações de indivíduos inviáveis podem impactar em uma demora na convergência do algoritmo e impedir que melhores indivíduos possam aparecer mais rapidamente na população. Desta forma, tratar tais soluções inviáveis pode acarretar em um menor tempo computacional, assim como gerar soluções que atendam de maneira positiva determinado objetivo.

4.2 Representação computacional

Para tratar soluções inviáveis é necessária sua prévia detecção para, só então, aplicarse algum método para torná-las viáveis. Neste contexto, a representação da topologia de um SDR foi modelada por um conjunto de vetores de binários. Além de ser uma representação simples (DEB et al., 2000), mostra de forma completa a característica basilar da RSDR, a alteração do *status* (ligado ou desligado) de um conjunto de chaves.

No problema de RSDR deseja-se alterar o estado das chaves do sistema de modo a modificar sua topologia. Sendo assim, cada gene de um cromossomo nos AE's representa o *status* de uma chave do SD e um conjunto de genes representa um indivíduo, que no contexto de RSDR contém todos os *status* das chaves daquele SD. Nos sistemas estudados, cada linha comportou-se como uma chave.

Considerando o SDR que contém 33 barras e 37 linhas visto na Figura 4, cada chave c_i terá seu equivalente representativo em um vetor C de binários de tamanho nl, sendo nl o número de chaves, obedecendo a Equação 4.1.

$$c_i = \begin{cases} 1, & \text{se a chave } c_i \text{ está fechada;} \\ 0, & \text{caso contrário.} \end{cases}$$
(4.1)

Assim, o conjunto de chaves existentes no SDR da Figura 4 pode ser representado pela Tabela 1:

	CHAVE		
ÍNDICE	ORIGEM	DESTINO	STATUS
1	1	2	1
2	2	3	1
3	3	4	1
4	4	5	1
5	5	6	1
6	6	7	1
7	7	8	1
8	8	9	1
9	9	10	1
10	10	11	1
11	11	12	1
12	12	13	1
13	13	14	1

Tabela 1 – Representação binária das chaves de um SDR.

14	14	15	1
15	15	16	1
16	16	17	1
17	17	18	1
18	2	19	1
19	19	20	1
20	20	21	1
21	21	22	1
22	3	23	1
23	23	24	1
24	24	25	1
25	6	26	1
26	26	27	1
27	27	28	1
28	28	29	1
29	29	30	1
30	30	31	1
31	31	32	1
32	32	33	1
33	8	21	0
34	9	15	0
35	12	22	0
36	18	33	0
37	25	29	0

Definido o vetor de binários dos *status* das barras de um SD, passa-se agora para a representação computacional das interligações entre as barras, também necessária para o desenvolvimento deste trabalho. Por meio de uma estrutura que demonstre as barras e suas ligações, pode-se determinar quais são seus vizinhos. A informação de vizinhança entre as barras é necessária pois:

- É utilizada em determinados momentos no cálculo do fluxo de potência, via Equações 2.6, 2.14 e 2.15;
- Detecta de pontos de ciclos e ilhamentos (CORMEN et al., 2009).

No intuito de representar a vizinhança das barras, adotou-se a estrutura de grafos. Estes foram escolhidos devido à sua versatilidade e possibilidade de implementação computacional por meio de listas de adjacências (CORMEN et al., 2009). Os SDR são sistemas cuja representação gráfica resulta em grande esparsidade (matrizes em que há a maior parte das células apresentam valor zero). Como a matriz de adjacência é preferível para grafos densos e tem um maior consumo de memória (CORMEN et al., 2009), optou-se pela lista de adjacências para evitar problemas dada a esparsidade dos SDR.

Com o intuito de demonstrar a junção das estratégias de: (i) lista de adjacências; (ii) grafos; e (iii) vetor de binários, apresenta-se, a seguir, todas as representações computacionais utilizadas para um SDR hipotético visualizado na Figura 7.

Figura 7 – Grafo representando um sistema hipotético.

Fonte: Autoria própria.

Figura 8 – Representação binária factível.

	1	┭	0	0	1	
For	nte:	Au	tori	a p	rópi	ria.

Na Figura 7 os vértices numerados de 0 a 3 representam as barras do SDR e as arestas, identificadas por I, II, III, IV e V, as linhas. Uma aresta pontilhada demonstra uma chave desligada. Fazendo um paralelo com a representação binária vista anteriormente, e sabendo que nos SDR's testados cada linha se comportou como uma chave, o número 1, em um vetor binário, identifica uma chave ligada e o 0 uma desligada. Na Figura 8 tem-se o vetor binário equivalente aos *status* de todas as chaves do SDR representado na Figura 7. Essas representações definem um sistema cuja restrição de radialidade está mantida, ou seja, é uma solução viável/aplicável no mundo real. Por outro lado, uma solução infactível dentro do contexto de RSDR tem uma configuração de linhas de distribuição com:

- Barra(s) ilhada(s) e/ou;
- Topologia de operação com a existência de circuitos/ciclos.

Um sistema que apresenta estas duas características pode ser visto na Figura 9, podendo-se observar:

- Um circuito, formado pelos vértices 1, 2 e 3 interligados pelas arestas III, IV e V;
- Duas ilhas, sendo uma formada apenas pelo vértice 1 e a outra, pelos vértices 1, 2, e 3;
- Em (b) verifica-se o vetor binário com os *status* das linhas.

Uma solução conforme apresentada na Figura 9 é de aplicação inviável no mundo real, haja vista o fato de ferir a restrição de radialidade.

Figura 9 – (a) Grafo representando um sistema hipotético com ilhamento e ciclos. (b) Vetor binário dos *status* das chaves.

Fonte: Autoria própria.

De forma a consolidar os conceitos deste capítulo, tem-se na Figura 10 um SD com linhas cujos *status* mostram um sistema operando de forma malhada. O grafo deste SD pode ser visualizado na Figura 10.b. Este SD tem como lista de adjacências a visualizada na Figura 11.a e matriz de adjacências verificada na Figura 11.b. Este paralelo das representações matricial e por lista permite a constatação dos pontos importantes citados nesta seção.

A lista de adjacências, quando comparada à matriz de adjacências, necessita de uma menor quantidade de memória para representar um mesmo SD. Percebe-se na Figura 11 que as linhas inexistentes de um SD não são representadas quando se utiliza a lista de adjacências. Entretanto, na forma de matriz, linhas inexistentes são representadas.

A implementação por meio de lista de adjacências apresenta, além de uma menor quantidade de memória para sua representação, uma maior eficiência na varredura de nós vizinhos. Esta última característica é de fundamental importância neste trabalho, haja vista que, o cálculo de fluxo de potência descrito no Capítulo 2 necessita, frequentemente, identificar a lista de barras vizinhas de determinado nó. Ainda que a representação por meio de matriz de adjacências seja preferível, quando se deseja verificar a existência de uma aresta interligando dois vértices (CORMEN et al., 2009), o vetor binário de representação

Figura 10 – (a) Representação unifilar de um SD. (b) Representação por meio de grafo.

Fonte: Autoria própria.

dos *status* das chaves pôde ser utilizado para o mesmo propósito, visando assim contornar este *déficit* das listas de adjacências.

Figura 11 – SDR com seu grafo e suas representações por lista de adjacências (a) e matricial (b).

Fonte: Autoria própria.

4.3 Abordagem de Penalização

O uso de métodos de penalidade para resolver problemas de programação não-linear originou-se em 1943 por Courant. Courant, no entanto, usou esses métodos de penalidade apenas para obter soluções para equações diferenciais, e somente no final dos anos 1960

iniciou-se a aplicação de métodos de penalidade para resolução de problemas NP (JOINES; HOUCK, 1994).

Joines e Houck (1994) relatam que as funções de penalidade baseadas na distância da viabilidade superam aquelas fundamentadas no número de restrições violadas. Joines e Houck (1994) citam ainda, que a principal limitação das funções de penalidade é o grau em que cada restrição é penalizada. Caso um alto grau de penalidade seja imposto a uma solução, mais ênfase é colocada na obtenção de viabilidade e o AE irá evoluir mais rapidamente para uma solução viável. Isto faz com que o sistema encaminhe-se para um ponto viável, mesmo que esteja longe de ser ideal. No entanto, caso haja um baixo grau de penalidade, menos ênfase é dada à viabilidade, e o sistema pode nunca convergir para uma solução viável (JOINES; HOUCK, 1994).

Desta forma, propôs-se uma penalização que pondera a infactibilidade de uma solução. Como visto na Seção 4.2, um indivíduo infactível no contexto de RSDR é aquele que apresenta ciclos e/ou ilhas, então, acredita-se que quanto mais ciclos e ilhas um indivíduo tiver, maior será seu grau de infactibilidade. Partindo-se deste ponto e considerado as afirmações feitas pelos autores em Joines e Houck (1994) propôs-se uma forma de penalização para indivíduos infactíveis perante o problema de RSDR por meio de AE's.

Seja S uma solução qualquer de uma população P, sua função de avaliação calculada na forma S.fitness e a verificação de factibilidade obtida na forma S.factivel, a função de penalização pôde ser generalizada na Equação 4.2. Penalizando-se assim uma solução quando a condição contida na linha 1 do Algoritmo 2 não for obedecida, ou seja, na existência da infactibilidade da solução S, a mesma deve ser penalizada.

Algoritmo 2: Cálculo de <i>fitness S</i> .
$\mathbf{Entrada}: S$
1 if S.factivel then
2 Fitness = S.fitness;
3 else
4 $Fitness = \text{penaliza}(S);$
5 end

Esta formulação penaliza os problemas de minimização tratados neste trabalho. O valor 1000 foi escolhido pois, conforme ensinam Joines e Houck (1994), um alto grau de penalização auxilia o AE a evoluir mais rapidamente pra uma solução viável.

$$Fitness = 1000 + 10 * n_c + 10 * n_i \tag{4.2}$$

Onde:

• n_c representa o número de ciclos existentes na solução S;

• n_i representa o número de ilhas existentes na solução S.

A estrutura da solução não é alterada em nenhum momento, ou seja, o vetor de binários, representativo da solução infactível em questão, é mantido e segue na população.

4.4 Abordagem de substituição de soluções pelo Algoritmo de Kruskal

Quanto maior a quantidade de linhas em um SDR, mais topologias podem ser geradas. À luz da Teoria dos Grafos e no contexto de SDR, o grafo que representa um SD cuja restrição de radialidade se mantém, é denominado árvore (CORMEN et al., 2009). Algoritmos de Árvore Espalhada Mínima (MST - *Minimum Spanning Tree*) (CORMEN et al., 2009) são capazes de gerar uma árvore dado um conjunto de arestas e vértices.

A abordagem de substituição de soluções infactíveis pode ocorrer descartando-se a solução inviável e, posteriormente, colocando em seu lugar uma outra que atenda às restrições do problema. Tendo em vista que as soluções viáveis do problema de RSDR representam uma topologia de rede radial e a estrutura de árvore obedece a este princípio, adotou-se o uso de um algoritmo de MST para gerar a solução que substituiu tais soluções infactíveis. O algoritmo de MST utilizado neste trabalho foi o de Kruskal (KRUSKAL, 1956). Neste algoritmo a geração de árvores é baseada na escolha dos pesos das arestas de um grafo. Os valores dos pesos foram gerados de forma aleatória sempre que a condição da linha 1 do Algoritmo 2 for falsa. De forma genérica o algoritmo de Kruskal segue a Definição 1 (CORMEN et al., 2009):

Definição 1. Algoritmo de Kruskal: Escolha qualquer aresta não escolhida do peso mais baixo que não crie um ciclo com as arestas escolhidas e continue até que não haja mais arestas disponíveis.

Esta abordagem de tratamento de infactibilidade altera totalmente a solução infactível. Desta forma, todo o esquema de genes que representa um indivíduo é excluído.

5 Heurística de Factibilização Proposta

Neste capítulo é detalhada a heurística de factibilização de soluções infactíveis geradas em AE's quando tratam o problema de RSDR. Na Seção Na Seção 5.1 apresenta-se a hipótese que gerou a proposta deste trabalho. A Seção 5.2 detalha o algoritmo de factibilização em si. Por fim, na Seção 5.4 é demonstrada a complexidade do algoritmo de factibilização proposto.

Joines e Houck (1994) listam quatro métodos para lidar com restrições em AE's: rejeição da descendência, algoritmos de reparo, operadores genéticos modificados e funções de penalidade. Desenvolveu-se na Seção 4.3 uma função de penalização para soluções inviáveis. A Seção 4.4 tratou sobre a rejeição de descendência e neste capítulo propõe-se um algoritmo de reparo/factibilização.

5.1 Questão norteadora

Na Figura 12 a área destacada em cinza representa a região factível de um espaço de busca de um problema hipotético. Os pontos demonstram possíveis soluções para o problema. As soluções inseridas dentro da área destacada são as soluções factíveis e qualquer solução fora da área cinza representa uma solução inviável/infactível.

Fonte: Autoria própria.

O ponto (x, y) representa o ótimo global deste problema. Ao considerar a estratégia de substituição por Kruskal, quando um AE se deparasse com a solução (x_1, y_1) , esta

seria descartada imediatamente e substituída por qualquer uma outra solução possível (pontos destacados na área sombreada). Já a estratégia de penalização, qualificaria tal solução com uma avaliação muito baixa, podendo não retratar o quão próxima está em relação à solução ótima. É visível na Figura 12 que a solução (x_1, y_1) está muito próxima ao ótimo global. Descartar uma solução tão limítrofe ao ponto ótimo de um problema pode acarretar em um atraso no desenvolvimento do processo de busca.

Partindo-se deste questionamento, desenvolveu-se uma heurística que trata soluções infactíveis e corrobora o Teorema dos Esquemas de Holland (HOLLAND et al., 1992). Este teorema menciona que um esquema com avaliação superior à média, tende a ocorrer mais frequentemente nas próximas gerações e aqueles com avaliações abaixo da média tendem a desaparecer. Como já citado algumas vezes neste trabalho, a ação dos operadores genéticos pode destruir indivíduos com *fitness* potencialmente acima da média e, consequentemente, seus esquemas.

Holland et al. (1992) citam que um AE é, na verdade, um grande manipulador de esquemas, agindo para propagar os esquemas bons em toda a população ao longo de toda sua evolução. A manipulação desses esquemas pode ser realizada por meio dos princípios de *exploration* (busca de novos esquemas) e *explotation* (manutenção de esquemas bons já encontrados).

Em (HOLLAND et al., 1992), relata-se que os mecanismos de seleção e mutação proporcionam uma melhoria contínua da população, com a mutação gerando variantes da solução atual e a seleção aceitando essas mudanças com uma probabilidade alta. Desta forma, acredita-se que um tratamento de soluções inviáveis capaz de realizar um *explotation* a partir da solução infactível, pode manter possíveis esquemas de boa avaliação daquela solução.

Analisando as outras duas propostas de tratamento de infactibilidade, observa-se que quando se utiliza a penalização de indivíduos infactíveis, conforme Seção 4.3, pode-se facilmente e erroneamente classificá-los com notas ruins. Isto faz com que potenciais esquemas de alta qualidade, eventualmente sejam descartados nos processos de seleção, haja vista que uma nota ruim coloca o indivíduo em uma péssima posição, prejudicando sua escolha na etapa de seleção.

De maneira análoga, a substituição de uma solução inviável por uma viável, pode ocasionar problemas semelhantes à penalização. Realizar tal procedimento, como ocorre na substituição por Kruskal vista na Seção 4.4, pode excluir um indivíduo com esquemas de boa avaliação do processo evolutivo, da mesma maneira que pode inserir esquemas totalmente aleatórios na população, podendo causar assim um atraso na evolução do AE.

Uma heurística capaz de realizar uma busca local partindo de uma solução infactível assemelha-se ao fenômeno de melhoria contínua citado em (GOLDBERG, 1994). Voltando

para a Figura 12, visualiza-se que a solução infactível em destaque, (x_1, y_1) encontra-se em uma região vizinha ao ponto ótimo. Desta forma, acredita-se que melhorias contínuas possam aparecer ao se promover alterações na solução inviável, de modo a explorar soluções vizinhas à solução infactível. Apesar da exploração de vizinhança ter a tendência de ser razoavelmente local em extensão (GOLDBERG, 1994), o operador de cruzamento pode contornar esta eventual limitação por meio de saltos inteligentes em outros locais do espaço de busca (GOLDBERG, 1994).

Partindo-se da hipótese acima propôs-se uma heurística de factibilização de soluções infactíveis próprias de AE no problema de RSDR. Utilizou-se para tanto um algoritmo baseado na técnica de Busca em Profundidade (DFS - *Depth First Search*) (CORMEN et al., 2009).

5.2 Algoritmo de Factibilização

Na Figura 13 observa-se um grafo representando um sistema de 9 barras com ciclos e ilhas. As arestas pontilhadas 4-8 e 7-8 representam uma chave aberta, ou seja, os trechos encontram-se desligados e não existe passagem de corrente.

Figura 13 – Grafo representando um sistema de 9 barras em mallha e com uma barra ilhada.

Fonte: Autoria própria.

Partindo desta solução, pretende-se chegar a uma topologia factível, respeitandose a pré-existência de linhas, não criando novas, haja vista esta dissertação abordar o problema de reconfiguração e não de expansão. Uma possível factibilização da solução ilustrada na Figura 13 encontra-se na Figura 14.

O grafo representado na Figura 14 foi obtido por meio da heurística de factibilização proposta neste trabalho e é descrita na forma a seguir. Dado um vértice u, u.discovered =**true** significa que o vértice u foi encontrado pela busca; Adj[u] retorna a lista de adjacências Figura 14 – Grafo representando um sistema de 9 barras após factibilização.

Fonte: Autoria própria.

de u; $u.\lambda$ retorna um ponteiro para o pai de u. Algoritmos 3 e 4 são propostos para o tratamento de infactibilidade.

Algoritmo 3: DFS - Primeira etapa para detectar e remover ciclos.
Entrada: G = (V,E)
1 Estrutura de dados auxiliar: C é uma lista onde devem ser inseridos os
vértices descobertos.
2 $\mathbf{C} = \emptyset$
s foreach $vertex \ u \in G.V \ do$
4 $u.discovered = false$
5 $u.\lambda = NIL$
6 end
7 foreach $vertex \ u \in G.V \ do$
s if $(u.discovered == false) \land (Adj[u] \neq \emptyset)$ then
/* Chamado do Algoritmo 4. */
9 $detect_and_break_cycles(G, u, \mathbf{C})$
10 end
11 end

Na linha 8 do Algoritmo 3 visitam-se todos os nós(barras) não-ilhadas. Então, se um vértice $v \in G.V$ é um vértice não ilhado, o Algoritmo 4 é chamado e a busca continua.

No Algoritmo 4, deve-se marcar o vértice atual u como visitado e colocá-lo em uma lista **C**. Se em Adj[u] existir um vértice que está presente em **C** e este não é pai de u, então um ciclo é detectado.

Quando os Algoritmos 3 e 4 terminarem, todos os vértices não isolados estarão com o *status* de visitado. Consequentemente, os vértices isolados estarão com o *status* não visitado. Se existir pelo menos um vértice não visitado, o grafo apresenta ilhamento.

Algoritmo 4: DFS - Segunda etapa para detectar e remover ciclos.

1 F	$unction detect_and_break_cycles(G, u, C):$	
2	u.discovered = \mathbf{true}	
3	$\mathbf{C} = \{u\} \cup \mathbf{C}$	
4	foreach $v \in Adj[u]$ do	
5	if $(\{\exists c \in C : c == v \land c \neq u.\lambda)\}$ then	
	/* Quebra de um ciclo encontrado.	*/
6	$\operatorname{Adj}[u] = \operatorname{Adj}[u] - v$	
7	end	
8	if $(v.discovered = false)$ then	
9	$v.\lambda = u$	
	/* Chamada recursiva do algoritmo.	*/
10	$detect_and_break_cycles(G, v, \mathbf{C})$	
11	end	
12	end	

5.3 Exemplo de aplicação da heurística

Nesta seção é demonstrado o passo a passo da factibilização de um grafo hipotético representando um SD com malhas em sua estrutura. Na Figura 15 é possível visualizar a dinâmica das listas $u \in C$ utilizadas pelos Algoritmos 3 e 4 além de uma visualização dos *status* das arestas(chaves do seccionadoras) e dos nós (barras) do SD.

Figura 15 – Etapas de factibilização da heurística proposta.

Fonte: Autoria própria.

No **Passo 1** visualiza-se um SD com 5 barras, numeradas de 0 a 4 com todas as linhas existentes (arestas) no *status* ligadas, ou seja, linhas cheias. No **Passo 2** todas as arestas são marcadas como não visitadas, graficamente destacadas em vermelho. A lista de pais aqui representada por $u.\lambda$ é inicializada como vazia assim como lista de nós visitados C.

Considera-se que cada nó do sistema tem um pai, para o nó x por exemplo, representamos sem pai por $x.\lambda$. O pai de um nó representa o nó antecessor àquele nó, ou seja, dado um caminho A - B, o pai de B é A (de onde partiu-se para se chegar a B).

No **Passo 3** inicia-se a factibilização partindo-se do nó 0, pode-se partir de qualquer nó (por convenção partiu-se do nó que representa a subestação), não há alteração da complexidade do algoritmo e, por consequência, não altera-se o tempo computacional da heurística. O nó 0 é marcado como visitado e inserido na lista C. Do nó 0 pode-se partir para os nós vizinhos a ele, no caso 1e4, o exemplo seguirá para a direita mas nada impede de se escolher o nó à esquerda.

No **Passo 4** o pai do nó 1 é definido como $1.\lambda = 0$, visita-se o nó 1 e o mesmo é inserido na lista C = 0, 1. Os **Passo 5, 6 e 7** seguem a mesma lógica.

Ao chegar no nó 4, **Passo 8** o algoritmo para pois o nó 0 já está marcado como visitado, ou seja, ir para ele é o mesmo que inseri-lo na lista C, e tal fato configuraria a criação de um ciclo. A mesma lógica acontece se visitar-se o nó 1 (**Passo 9**) ou o nó 2 (**Passo 10**). As arestas que podem criar ciclos: 4 - 0, 4 - 1 e 4 - 2 estão destacadas em vermelho e tem seus *status* definidos como desligados e, só assim, poder-se-á realizar o cálculo de fluxo de carga no SD, agora com sua estrutura, de fato, radial.

5.4 Complexidade do algoritmo

Seja ni o número de de nós isolados ou ilhas encontradas no grafo, V o número de vértices e E o número de arestas. Como os Algoritmos 3 e 4 são reiniciados para cada nó ou ilha isolados encontrados, e sabendo que a DFS usada para percorrer o grafo tem ordem de complexidade é: O(V + E), o algoritmo proposto possui $O(ni \times (V + E))$ ordem de complexidade total. Portanto, o algoritmo proposto tem complexidade linear, que é o ideal para um algoritmo.

5.5 Considerações Finais do Capítulo

Ao se analisar a complexidade da heurística verificou-se um baixo custo computacional. Esta característica é de fundamental importância pois, ao se considerar toda uma população, avaliações constantes em cada indivíduo podem acarretar em um maior tempo de convergência do AE.

6 Simulações e Resultados

Neste capítulo são demonstrados os resultados obtidos com a aplicação das metodologias discutidas nos Capítulo 4 e da heurística proposta nesta dissertação, abordada no Capítulo 5. A análise foi realizada por meio de simulações computacionais e as duas principais métricas avaliadas foram o tempo computacional e a redução das perdas de potência ativa.

Para este propósito foram utilizados os sistemas de 33, 84, 136 e 417 barras. Os dados das barras, linhas e referências dos sistemas podem ser encontrados em (OLIVEIRA, 2011; FIORAVANTI JUNIOR, 2014). Todas as simulações foram realizadas em ambiente Windows (10 Pro 64 bits, utilizando um computador com processador de 3.6 GHz e 8 GB de memória *ram*. Todo o projeto foi implementado em C++ e implementou-se uma versão em C++ baseada no *framework* JMetal (DURILLO; NEBRO, 2011).

O sistema de 33 barras possui 37 linhas de interconexão e tensão nominal de 12.66 kV. O sistema de 84 barras possui 96 linhas de interconexão e tensão nominal de 11.4 kV. O sistema de 136 barras possui 156 linhas de interconexão e tensão nominal de 13.8 kV. O sistema de 415 barras possui 473 linhas e tensão nominal de 10kV. Detalhes adicionais sobre cada um dos sistemas podem ser consultados nos Apêndice B, C, D e E.

6.1 Métricas de avaliação

No total, quatro métricas foram utilizadas como parâmetros de comparação entre a penalização, substituição por Kruskal e a heurística de factibilização proposta. Podendo ser divididas em dois cenários, mono-objetivo e multi-objetivo.

Realizaram-se experimentos computacionais com os 4 sistemas descritos com o objetivo de avaliar o tempo de convergência computacional dos dois métodos de FP. Um destes foi o cálculo do FP baseado na técnica de Newton-Raphson e o outro foi o Shirmohammadi (SHIRMOHAMMADI et al., 1988), detalhado no Capítulo 2. O método de Newton-Raphson foi utilizado para comparação por ser um dos pioneiros e mais utilizados para este fim (TINNEY; HART, 1967; STOTT, 1972; MONTICELLI, 1983).

Para o AE monoobjetivo avaliou-se a perda de potência ativa mediante RSDR, que por ser um cenário bem trabalhado nas pesquisas de RSDR foi escolhido de modo a trazer uma contribuição para contexto de investigações científicas. Neste cenário avaliou-se para cada metodologia comparada:

• O estado final das chaves do sistema;

- As perdas de potência ativa finais (*fitness* de fato);
- O tempo computacional.

Um AE multi-objetivo lida com 2 ou mais objetivos, este trabalho teve como escopo apenas 2. A redução de perdas de potência ativa permaneceu como um dos objetivos e o segundo objetivo foi o número de manobras utilizado para se atingir determinada topologia de rede partindo-se de uma topologia inicial. Para este cenário, foram comparados os seguintes pontos:

- A métrica de *hypervolume* normalizado foi utilizada apenas quando existiu uma convergência das experimentações computacionais realizadas, haja vista a necessidade de um ponto de referência para seu cálculo (DEB et al., 2000);
- Tempo de convergência;
- Análise gráfica das fronteiras de Pareto alcançadas.

6.2 Fluxo de Potência

Na Figura 16 é visualizado o tempo computacional em cada um dos sistemas simulados e para cada FP comparado. Em todos os cenários o método de FP de Shirmohammadi obteve menor tempo de convergência. Observa-se que o tempo computacional cresce exponencialmente à medida que o número de linhas do sistema aumenta.

Figura 16 – Tempos computacionais para os FP de Newton-Raphson, tolerância 10^{-6} .

O *fitness* dos SD quando tratados com a abordagem de penalização não representam verdadeiramente o cálculo das perdas de potência ativa do sistema, uma vez que uma configuração de chaves seccionadoras nem sempre proporciona a possibilidade do cálculo do flux ode carga. Diante deste fato, ainda que quando nomeadamente *fitness*, as avaliações das configurações infactíveis por meio da abordagem de penalização, correspondem a uma nota de penalidade.

Conforme cita o autor em Brandini (2000), a complexidade na resolução de um problema de FP, quando é usado um método de Newton, está determinado pelo tamanho de um subsistema 1. Possuindo este, 2NPQ + NP equações não lineares igual ao número de incógnitas de tipo V_k e Θ_k , sendo NPQ e NPV o número de barras do tipo PQ e PV respectivamente. Adiciona-se a isto o fato do método de Newton e suas versões desacopladas necessitarem mais tempo de processamento para convergência quando comparados aos algoritmos específicos para resolução de FP em SDR (BRANDINI, 2000).

6.3 AE Monoobjetivo

Para o AG utilizado neste trabalho utilizaram-se os seguintes parâmetros :

- População inicial com 30 indivíduos;
- Critério de parada foi 100.000 avaliações de *fitness* (cálculo das perdas de potência ativa);
- Taxa de mutação o obedeceu a Equação 6.1;
- Taxa de cruzamento 90%;
- Crossover half uniforme (PICEK; GOLUB, 2010);
- Seleção por torneio binário (DEB et al., 2000).

$$T_m = 1/nbits \tag{6.1}$$

Onde:

- T_m representa a taxa de mutação;
- *nbits* é o número de *bits* necessários para representar um determinado indivíduo.

Foram realizadas 10 experimentações computacionais para cada sistema, os resultados estatísticos são detalhados na sequência, representando os dados de média, desvio padrão, máximo e mínimo das simulações de cadas sistema. Para que não haja confusão de termos, os sistemas de 33, 84 e 417 barras foram referenciados também como de menor, médio e grande portes. A avaliação de *fitness* máximo pode ser verificada na Tabela 2. Os resultados mostraram um menor valor de *fitness* nos sistemas de pequeno e médio porte quando se utilizou a heurística proposta. Já para o de maior porte a penalização mostrou uma melhor avaliação.

CASOS	METODOLOGIA			
	Heurística	Kruskal	Penalização	
33	$201,\!239$	$207,\!974$	1020	
84	$817,\!435$	$1458,\!43$	1020	
417	$4027,\!26$	$4318,\!15$	1030	

Tabela 2 – Avaliação de *fitness* máximo.

*Valores em kW

O *fitness* mínimo pode ser verificado na Tabela 3. Para o sistema de pequeno porte todas as metodologias alcançaram o mesmo valor, sendo este o menor encontrado na literatura e destacado na Tabela 4. A heurística proposta e a penalização obtiveram os menores resultados para o sistema de médio porte, sendo estes também os melhores encontrados na literatura, vide Tabela 5. A abordagem de substituição por Kruskal apresentou o pior resultado. A heurística de factibilização apresentou de longe o melhor resultado para o sistema de maior porte, já a substituição por Kruskal ficou com o resultado intermediário, estando bem próxima da penalização.

CASOS	METODOLOGIA			
	Heurística	Kruskal	Penalização	
33	139,519	$139,\!519$	$139,\!519$	
84	$469,\!873$	$502,\!614$	$469,\!873$	
417	$647,\!386$	$972,\!399$	1010	

Tabela 3 – Avaliação de *fitness* mínimo.

*Valores em kW

As avaliações de *fitness* médio podem ser visualizadas na Tabela 6. Os resultados mostraram um menor valor de *fitness* para os sistemas de pequeno e médio porte quando se utilizou a heurística de factibilização. A penalização apresentou um menor valor de *fitness* médio quando se avaliou o sistema de 417 barras. O comportamento da substituição por Kruskal, quando se avaliou o *fitness* médio, mostrou-se semelhante à de *fitness* máximo, ou seja, uma piora quando o sistema teve sua dimensão incrementada.

Configurações	Chaves Abertas	Perdas Ativas (kW)
Inicial	33-34-35-36-37	$202,\!52$
Final	7-9-14-32-37	139,55
(OLIVEIRA, 2011) (CARRENO; MOREIRA; ROMERO, 2007)	7-9-14-32-37	139,55

Tabela 4 – Reconfiguração do SDR de 33 barras.

Tabela 5 – Reconfiguração do SDR de 84 barras.

Configurações	Chaves Abertas	Perdas Ativas (kW)
Inicial	84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96	531,90
Final	7, 13, 34, 39, 42, 55, 62, 72, 83, 86, 89, 90, 92	469,88
(OLIVEIRA, 2011) (WANG; CHENG, 2008)	7, 13, 34, 39, 42, 55, 62, 72, 83, 86, 89, 90, 92	469,88

CASOS	METODOLOGIA		
	Heurística	Kruskal	Penalização
33	$163,\!066$	$171,\!921$	$508,\!821$
84	$597,\!669$	1069,2	$740,\!936$
417	$1440,\!54$	$2440,\!36$	1017

Tabela 6 – Avaliação de *fitness* médio.

*Valores em kW

O desvio padrão dos resultados simulados seguem na Tabela 7. Percebeu-se um aumento do desvio padrão quando se utilizou a heurística proposta e a substituição por Kruskal à medida que o porte dos sistemas avaliados aumentava. A utilização de penalização apresentou um menor desvio quando se analisou o sistema de maior porte.

Tabela 7 – Avaliação do desvio padrão de fitness.

_				
CASOS	METODOLOGIA			
	Heurística	Kruskal	Penalização	
_	33	$20,\!556$	$20,\!6476$	$414,\!897$
	84	$99,\!5251$	$242,\!935$	$271,\!078$
	417	$100,\!55$	$1034,\!91$	$7,\!81025$

*Valores em kW

Resumo <i>Fitness</i>				
	33	84	417	Melhor
Máximo	\mathbf{H}	\mathbf{H}	Р	\mathbf{H}
Mínimo	HKP	HP	\mathbf{H}	\mathbf{H}
Médio	\mathbf{H}	Η	Ρ	\mathbf{H}
Desvio Padrão	\mathbf{H}	\mathbf{H}	Ρ	\mathbf{H}
Melhor	\mathbf{H}	\mathbf{H}	\mathbf{P}	

Tabela 8 – Resumo de avaliações de fitness.

De maneira geral, a substituição utilizando Kruskal apresentou-se como a pior em todos os cenários, empatando com as demais heurísticas apenas na avaliação de *fitness* mínimo para o sistema de pequeno porte. Entende-se que, devido ao espaço de busca do sistema de 33 barras ter uma quantidade de soluções baixa, quando comparada com os demais sistemas, o sistema conseguiu atingir o ponto ótimo.

A Tabela 8 resume os resultados das avaliações de *fitness* para cada sistema. A letra **H** representa a heurística proposta, a letra **P** a penalização e a letra **K** a substituição de soluções por meio do algoritmo de Kruskal. A coluna/linha nomeada como **melhor** representa qual heurística foi a melhor de forma global em cada cenário. Da Tabela 8 concluiu-se que a heurística de factibilização proposta mostrou ser a melhor alternativa de avaliação de *fitness* para sistemas de pequeno e médio porte. Ainda que a penalização tenha se apresentado como a melhor em mais cenários de avaliação de *fitness* para o sistema de maior porte, o *fitness* mínimo para este sistema só foi alcançado pela heurística proposta. Considerando-se que o objetivo é a minimização de perdas por meio da RSDR em AE's, a heurística proposta mostrou ser a melhor alternativa frente às outras metodologias comparadas.

Com relação ao tempo máximo, verificado na Tabela 9, a abordagem de penalização atingiu o menor tempo em todos os casos. Enquanto a abordagem de factibilização teve o segundo melhor tempo nos sistemas de pequeno e médio porte.

CASOS	METODOLOGIA		
011505	Heurística	Kruskal	Penalização
33	$4,\!184$	7,012	$1,\!347$
84	$18,\!587$	$22,\!816$	$3,\!672$
417	$447,\!488$	434,9	$49,\!543$

Tabela 9 – Tempo máximo AG.

*Tempo em segundos

A penalização teve o menor tempo em todos os sistemas em relação ao tempo mínimo verificado na Tabela 10. A heurística de factibilização obteve o segundo menor tempo em todos os sistemas e Kruskal apresentou a pior avaliação em todos os cenários avaliados.

CASOS	METODOLOGIA		
	Heurística	Kruskal	Penalização
33	3,986	6,758	1,26
84	$10,\!304$	$22,\!463$	$3,\!356$
417	$360,\!197$	$431,\!565$	$44,\!253$

Tabela 10 – Tempo mínimo AG.

*Tempo em segundos

Quando se verifica o tempo médio na tabela 11, o comportamento é o mesmo do verificado na Tabela 10. A substituição de soluções por Kruskal apresentou o pior cenário, a heurística proposta apresentou o segundo menor tempo médio e a penalização teve o menor.

CASOS	METODOLOGIA		
	Heurística	Kruskal	Penalização
33	4,0637	6,8583	$1,\!2859$
84	$11,\!2299$	$22,\!6171$	3,4698
417	$401,\!9534$	$432,\!8744$	$46,\!8193$

Tabela 11 – Tempo médio AG.

*Tempo em segundos

A Tabela 12 mostra os resultados de desvio padrão do tempo nas 10 simulações realizadas para cada sistema utilizando o AG.

CASOS	METODOLOGIA			
011000	Heurística	Kruskal	Penalização	
33	0,069	0,080	0,023	
84	$2,\!587$	$0,\!124$	0,089	
417	$33,\!451$	1,070	$1,\!614$	

Tabela 12 – Desvio padrão AG.

6.4 AE Multiobjetivo

O algoritmo multiobjetivo utilizado neste trabalho foi o NSGA-II (DEB et al., 2002). Os objetivos otimizados foram: o número de manobras e a perda de potência ativa em kW. Foram simulados os mesmos sistemas de 33, 84 e 417 barras. Os seguintes parâmetros foram utilizados:

- População inicial com 30 indivíduos;
- Critério de parada foi 100.000 avaliações de *fitness*;
- Taxa de mutação o obedeceu a equação 6.1;
- Taxa de cruzamento 90%;
- Crossover half uniforme (PICEK; GOLUB, 2010);
- Seleção por torneio binário (DEB et al., 2000) baseado no operador crowding distance.

6.4.1 Análise do sistema de 33 barras

As Figuras 17, 18 e 19 demonstram a evolução do sistemas de 33 barras quando se utilizou as três metodologias comparadas neste trabalho.

As soluções ótimas foram alcançadas em todas as 10 simulações quando se utilizou a heurística proposta e penalização quando se observou a evolução do algoritmo em um espaço de busca pequeno. Como já citado, em um espaço de busca pequeno como é o do sistema de 33 barras, pode-se priorizar o uso da penalização visto que os tempos desta estratégia são significativamente inferiores às outras comparadas, vide Tabelas 9, 10 e 11. A substituição de soluções infactíveis por meio do algoritmo de Kruskal não convergiu nas 10 simulações realizadas.

Figura 17 – Fronteiras Pareto para o sistema de 33 barras utilizando a heurística proposta.

Figura 18 – Fronteiras Pareto para o sistema de 33 barras utilizando Kruskal.

Figura 19 – Fronteiras Pareto para o sistema de 33 barras utilizando penalização.

6.4.2 Análise do sistema de 84 barras

As Figuras 20, 21 e 22 demonstram as Fronteiras de Pareto alcançadas pelo sistema de 84 barras quando se utilizou as metodologias comparadas neste trabalho. A Figura 20 demonstra uma convergência de todas as 10 simulações para uma mesma Fronteira de Pareto. Entretanto, não se observou a mesma convergência na Figura 21. Por fim, observa-se um único ponto na Figura 22 não gerando portanto uma Fronteira de Pareto, tal ponto pode significar uma região de platô (mínimo local) que perdurou por longas épocas na evolução do AE.

Figura 20 – Fronteiras Pareto para o sistema de 84 barras utilizando a heurística proposta.

Figura 21 – Fronteiras Pareto para o sistema de 84 barras utilizando Kruskal.

As fronteiras de Pareto para o sistema de médio porte observadas na Figura 21 apresentaram, além de um número de soluções superiores, a existência de um espalhamento

Figura 22 – Fronteiras Pareto para o sistema de 84 barras utilizando penalização.

Fonte: Autoria própria.

de soluções, fato inexistente quando se observou o mesmo sistema com a metodologia de penalização, Figura 22, onde o NSGA-II não conseguiu evoluir, mesmo quando se executaram 10 simulações.

6.4.3 Análise do sistemas de 417 barras

Aqui são demonstrados os resultados dos experimentos computacionais envolvendo o sistema de maior porte. Nas Figuras 23, 24 e 25 pôde-se observar as Fronteiras de Pareto quando se utilizou as três metodologias propostas. O sistema de 417 barras apresentou os melhores resultados para a abordagem multi-objetivo quando se utilizou a heurística proposta.

Fonte: Autoria própria.

Ainda que não tenha havido convergência em todas as 10 simulações, na Figura 23 as Fronteiras de Pareto apresentaram-se em intervalos dentro da realidade do problema de RSDR (SOUZA, 2013). Observou-se um bom espelhamento da soluções e uma convergência no sentido do ponto utópico ótimo (0, 0), típico de problemas multi-objetivos cujos objetivos são ambos de minimização.

Figura 24 – Fronteiras Pareto para o sistema de 417 barras utilizando Kruskal.

As fronteiras de Pareto apresentaram divergências tão altas que a silhueta típica (Figura 23) deixou de existir, como pode ser observado na Figura 24. O fato pode ser explicado pelos resultados das diferentes simulações apresentaram um alto desvio padrão.

Figura 25 – Fronteiras Pareto para o sistema de 417 barras utilizando penalização.

Devido ao grande espaço de busca existente para o sistema de 417 barras, é possível que a não convergência para uma fronteira de Pareto única, como observado nas Figuras 17, 19 e 20, deva-se à necessidade de um maior número de avaliações de *fitness*, haja
vista que este foi o critério de parada do NSGA-II neste trabalho, e/ou a um aumento da população.

Quando se analisa o tempo mínimo da abordagem multi-objetivo utilizando-se o NSGA-II, observou-se um comportamento semelhante ao ocorrido para o AG (Tabela 10) nos sistemas de pequeno e médio porte. Verifica-se na Tabela 13 a substituição por Kruskal com os piores tempos. Há de se ressaltar que, para o sistema de maior porte, a heurística proposta apresentou o menor tempo dentre os máximos.

TEMPO MÍNIMO								
CASOS	Heurística	Kruskal	Penalização					
33	$3,\!492$	$6,\!204$	$1,\!6$					
84	$7,\!387$	19,333	$3,\!403$					
417	$101,\!818$	$318,\!629$	$145,\!666$					

Tabela 13 – Tempo mínimo NSGA-II.

*Tempo em segundos

O comportamento do tempo médio, observado na Tabela 14 foi o mesmo verificado para o tempo mínimo: Kruskal com os piores resultados em todos os casos, penalização com os melhores resultados para os sistemas de pequeno e médio porte e a heurística proposta com o menor tempo médio para o sistema de maior porte.

	TEMPO MÉ	DIO	
CASOS	Heurística	Kruskal	Penalização
33	$3,\!5332$	$6,\!6176$	$1,\!6292$
84	$7,\!5324$	20,093	4,0134
417	$129,\!879$	$369,\!7989$	$175,\!3104$

Tabela 14 – Tempo médio NSGA-II.

*Tempo em segundos

Tabela 15 – Tempo máximo NSGA-II.

	TEMPO MÁXIMO								
	CASOS	Heurística	Kruskal	Penalização					
	33	$3,\!633$	$6,\!987$	$1,\!741$					
	84	$7,\!672$	$20,\!835$	$4,\!431$					
_	417	$153,\!227$	$413,\!545$	$233,\!221$					

*Tempo em segundos

As análises do tempo máximo, vide Tabela 15, mostraram o mesmo comportamento observado nos tempo mínimo e médio. Os desvios padrão, observados na Tabela 16, foram crescentes à medida que o porte dos sistemas aumentava. Os desvios para a substituição por Kruskal foram os piores em todos os casos. A penalização apresentou o menor desvio apenas no menor sistema.

Os desvios alcançados nos sistemas de médio e grande porte foram os menores quando se utilizou a heurística de factibilização proposta.

DESVIO PADRÃO									
CASOS	Heurística	Kruskal	Penalização						
33	$0,\!045$	$0,\!277$	0,043						
84	0,089	0,490	$0,\!288$						
417	$16,\!294$	$27,\!620$	$27,\!595$						

Tabela 16 – Desvio padrão NSGA-II.

6.5 Considerações Finais do Capítulo

Os experimentos realizados em AE's mono e multi-objetivos mostram que a heurística de factibilização diminuiu o custo computacional e aumentou a qualidade das soluções encontradas para:

- Os cenários de pequeno e médio porte quando se visou a redução de perdas de potência ativa;
- O cenário de grande porte em um AE multi-objetivo de minimização de perdas de potência ativa e redução do número de manobras.

7 Conclusões

Neste trabalho foi apresentada uma heurística de factibilização para soluções infactíveis provenientes dos AE's mono e multi-objetivo no problema de reconfiguração de redes de distribuição. A heurística proposta respaldou-se no Teorema dos Esquemas de Holland (HOLLAND et al., 1992).

Foi apresentada uma comparação entre um fluxo de carga voltado para Sistemas de Distribuição Radial e outro baseado no método de Newton-Raphson e mais generalista. O método de fluxo de carga voltado para SDR, o método de Shirmohammadi (SHIRMOHAMMADI et al., 1988). Verificou-se que o método de Newton-Raphson, no pior cenário, apresentou um tempo computacional de 1717.60% maior que o método de Shirmohammadi quando calcularam o Fluxo de Potência do sistema de 417 barras.

Os sistemas de pequeno e médio porte apresentaram os melhores resultados de *fitness* médio quando se utilizou a heurística proposta para o AE monoobjetivo. A penalização apresentou um aumento de 312,03% e a substituição por Kruskal 105,43% quando se analisou o sistema de pequeno porte. Para o sistema de 84 barras o aumento foi de 123,97% e 178,9% para penalização e Kruskal respectivamente. Ainda que a heurística de factibilização não tenha obtido os melhores resultados na avaliação de *fitness* médio, esta abordagem alcançou o menor *fitness* mínimo para o sistema de maior porte.

A aplicação da metodologia em algoritmos mono-objetivos encontrou as menores perdas de potência ativa em todos os cenários. Para os sistemas de pequeno e médio porte alcançaram-se as menores perdas de potência da literatura. Entretanto, para o sistema de maior porte, obteve-se 11,32% a mais de perdas de potência ativas em relação aos encontrados em (SOUZA, 2013).

As Fronteiras de Pareto foram analisadas graficamente para o cenário multi-objetivo haja vista não existir na literatura pontos de referência para este problema. O espalhamento das soluções finais e a convergência das fronteiras foram mais bem avaliadas sempre que se utilizou a heurística proposta.

Ainda no AE multi-objetivo, a heurística proposta foi capaz de mostrar melhores resultados em menos tempo para o cenário de 417 barras. A penalização apresentou um tempo 284,73% pior em relação à heurística proposta e a metodologia de substituição por Kruskal apresentou uma piora de 134,98% para o sistema de maior porte.

Com base nisso, a heurística proposta apresenta uma vantagem considerável nos SD's atuais na resolução de problemas multi-objetivos uma vez que os cenários atuais trazem sistemas de distribuição cada vez maiores. A convergência do *fitness* médio da metodologia proposta quando comparado à substituição por Kruskal apresentou um aumento de 69.41% em relação ao sistema de maior porte. Quando se avaliou a aplicação da heurística em sistemas multi-objetivos percebeu-se que, para sistemas de maior porte, os resultados qualitativos foram melhores em relação às outras duas abordagens. Kruskal manteve-se como a pior abordagem. Para sistemas de pequeno porte, tanto na abordagem mono-objetivo quanto na multi-objetiva, o uso de penalização mostrou-se como a melhor abordagem ainda que necessite de um número maior de avaliações para sua convergência, haja vista o tempo de simulação é significativamente menor.

Trabalhos Futuros

Pode-se, uma vez conseguido dados suficientes para se trabalhar com GD, aplicar a heurística em um cenário deste tipo, haja vista esta ser a realidade dos SD atuais.

As fronteiras de Pareto alcançadas servirão de base para simulações futuras, sendo as referências para cálculo das métricas que exigem pontos de referência, próprios de algoritmos multi-objetivos.

Pode-se utilizar a metodologia proposta em outras técnicas de AE's, como o PSO (*Particle Swarm Optimization*) e comparar os resultados com o NSGA-II.

Outra aspiração futura deste trabalho é utilizar a heurística proposta com a modelagem das chaves por meio de números reais e verificar-se o impacto desta representação frente à binária utilizada neste trabalho.

Considerando o cenário de redes de distribuição semi-malhadas, pode-se estender este trabalho para uma modelagem que insira uma existência de pequenas malhas na rede elétrica.

Em um cenário real nem todas as linhas existentes em um SD são chaveadas, para trabalhos futuros incentiva-se limitar o número de linhas cujo chaveamento seja possível, como forma de aproximar o cenário simulado a cenários reais.

Além dos objetivos aqui trabalhados podem ser inseridos novos correlacionados ou não aos aqui demonstrados.

Referências

AMAN, M. et al. Discrete evolutionary programming to solve network reconfiguration problem. In: IEEE. *IEEE 2013 Tencon-Spring*. [S.l.], 2013. p. 505–509. Nenhuma citação no texto.

ANEEL. *Boletim de Informações Gerenciais*. 2018. Disponível em: http://www.aneel.gov.br/documents/656877/14854008/Boletim+de+Informa%C3%A7%C3%B5es+Gerenciais+-+4%C2%BA+trimestre+2017/44ee3035-27e5-0398-e7e3-c612ec4dc994? version=1.0>. Acesso em: Online; accessado 05-Julho-2019. Nenhuma citação no texto.

BAGLEY, J. D. The behavior of adaptive systems which employ genetic and correlation algorithms, university of michigan. *Ann Arbor, MI*, 1967. Nenhuma citação no texto.

BARAN, M. E.; WU, F. F. Network reconfiguration in distribution systems for loss reduction and load balancing. *IEEE Transactions on Power delivery*, IEEE, v. 4, n. 2, p. 1401–1407, 1989. Nenhuma citação no texto.

BAZARAA, M. S.; SHERALI, H. D.; SHETTY, C. M. Nonlinear programming: theory and algorithms. [S.l.]: John Wiley & Sons, 2013. Nenhuma citação no texto.

BERG, R.; HAWKINS, E.; PLEINES, W. Mechanized calculation of unbalanced load flow on radial distribution circuits. *IEEE Transactions on power apparatus and systems*, IEEE, n. 4, p. 415–421, 1967. Nenhuma citação no texto.

BORGES, T. T. et al. Restabelecimento de sistemas de distribuição utilizando fluxo de potência ótimo. *Sba: Controle & Automação Sociedade Brasileira de Automática*, -, 2012. Nenhuma citação no texto.

BRANDINI, A. Análise crítica de algoritmos de fluxo de carga usados em sistemas de distribuição radial. Tese de Mestrado, Universidade Estadual Paulista–Faculdade de Engenharia de ..., 2000. Nenhuma citação no texto.

BUENO, E. A. Redução de perdas técnicas através de reconfigurações de redes de distribuição de energia elétrica sob demandas variáveis. Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação, Campinas, SP., 2005. Nenhuma citação no texto.

CARDOSO, J. B. *Reconfiguração ótima para cortes de cargas em sistemas de distribuição de energia elétrica.* Tese (Doutorado) — Universidade de São Paulo, 2016. Nenhuma citação no texto.

CARRENO, E.; MOREIRA, N.; ROMERO, R. Distribution network reconfiguration using an efficient evolutionary algorithm. In: IEEE. 2007 IEEE Power Engineering Society General Meeting. [S.l.], 2007. p. 1–6. Nenhuma citação no texto.

CARVALHO, M. R. Estudo comparativo de fluxo de potência para sistemas de distribuição radial. São Carlos, SP. Dissertação (Mestrado em Engenharia Elétrica)–Universidade de São Carlos, 2006. Nenhuma citação no texto.

CARVALHO, M. R.; BELATI, E. A.; COSTA, G. R. M. d. Estudo comparativo de fluxo de potência radial para sistemas de distribuição. *Book of Abstracts and Proceedings*, 2005. Nenhuma citação no texto.

CASTRO JUNIOR, C. A. d. Reconfiguração automática de redes de distribuição de energia elétrica. Universidade Estadual de Campinas, Faculdade de Engenharia de Campinas, Campinas, SP., 1985. Nenhuma citação no texto.

CAVELLUCCI, C. Buscas informadas baseadas em grafos para a minimização das perdas em sistemas de distribuição de energia elétrica. Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação, Campinas, SP., 1998. Nenhuma citação no texto.

CHENG, C. S.; SHIRMOHAMMADI, D. A three-phase power flow method for real-time distribution system analysis. *IEEE Transactions on Power Systems*, IEEE, v. 10, n. 2, p. 671–679, 1995. Nenhuma citação no texto.

CIVANLAR, S. et al. Distribution feeder reconfiguration for loss reduction. *IEEE Transactions on Power Delivery*, IEEE, v. 3, n. 3, p. 1217–1223, 1988. Nenhuma citação no texto.

CORMEN, T. H. et al. *Introduction to algorithms*. [S.l.]: MIT press, 2009. Nenhuma citação no texto.

DEB, K. et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. In: SPRINGER. *International conference on parallel problem solving from nature*. [S.l.], 2000. p. 849–858. Nenhuma citação no texto.

DEB, K. et al. A fast and elitist multiobjective genetic algorithm: Nsga-ii. *IEEE transactions on evolutionary computation*, IEEE, v. 6, n. 2, p. 182–197, 2002. Nenhuma citação no texto.

DURILLO, J. J.; NEBRO, A. J. jmetal: A java framework for multi-objective optimization. *Advances in Engineering Software*, Elsevier, v. 42, n. 10, p. 760–771, 2011. Nenhuma citação no texto.

ELGERD, O. I. *Introdução à teoria de sistemas de energia elétrica*. [S.l.]: McGraw-Hill do Brasil, 1978. Nenhuma citação no texto.

FIORAVANTI JUNIOR, C. Reconfiguração de alimentadores em sistemas de distribuição usando uma metaheurística e espaço de busca reduzido. Universidade Estadual Paulista (UNESP), 2014. Nenhuma citação no texto.

FRASER, A. S. Simulation of genetic systems by automatic digital computers i. introduction. *Australian Journal of Biological Sciences*, CSIRO, v. 10, n. 4, p. 484–491, 1957. Nenhuma citação no texto.

GOLDBERG, D. E. Genetic and evolutionary algorithms come of age. *Communications of the ACM*, Association for Computing Machinery, Inc., v. 37, n. 3, p. 113–120, 1994. Nenhuma citação no texto.

HOLLAND, J. H. et al. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. [S.1.]: MIT press, 1992. Nenhuma citação no texto.

JOINES, J. A.; HOUCK, C. R. On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with ga's. In: IEEE. *Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.* [S.1.], 1994. p. 579–584. Nenhuma citação no texto.

KAGAN, N.; OLIVEIRA, C. C. B. d.; ROBBA, E. J. Introdução aos sistemas de distribuição de energia elétrica. 2005. Nenhuma citação no texto.

KERSTING, W.; MENDIVE, D. An application of ladder theory to the solution of three-phase radial load-flow problem. *IEEE Transactions on Power Apparatus and Systems*, v. 98, n. 7, p. 1060–1067, 1976. Nenhuma citação no texto.

KRUSKAL, J. B. On the shortest spanning subtree of a graph and the traveling salesman problem. *Proceedings of the American Mathematical society*, JSTOR, v. 7, n. 1, p. 48–50, 1956. Nenhuma citação no texto.

LORENZETI, J. F. C. Reconfiguração de sistemas de distribuição de energia elétrica para a melhoria das condições de operação com relação à estabilidade de tensão. Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação, Campinas, SP., 2004. Nenhuma citação no texto.

MA, F.; KNIGHT, J. P.; PLETT, C. Physical resource binding for a coarse-grain reconfigurable array using evolutionary algorithms. *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, IEEE, v. 13, n. 5, p. 553–563, 2005. Nenhuma citação no texto.

MAGALHAES, A. d. S. Multi-chaveamento para restauração de serviço e balanceamento de carga em sistemas de distribuição de energia elétrica. Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação, Campinas, SP., 2007. Nenhuma citação no texto.

MONTICELLI, A. J. *Fluxo de carga em redes de energia elétrica*. [S.l.]: E. Blucher, 1983. Nenhuma citação no texto.

NASIRAGHDAM, H.; JADID, S. Optimal hybrid pv/wt/fc sizing and distribution system reconfiguration using multi-objective artificial bee colony (moabc) algorithm. *Solar Energy*, Elsevier, v. 86, n. 10, p. 3057–3071, 2012. Nenhuma citação no texto.

NIKNAM, T. An efficient hybrid evolutionary algorithm based on pso and hbmo algorithms for multi-objective distribution feeder reconfiguration. *Energy Conversion and Management*, Elsevier, v. 50, n. 8, p. 2074–2082, 2009. Nenhuma citação no texto.

NIKNAM, T.; FARSANI, E. A. A hybrid self-adaptive particle swarm optimization and modified shuffled frog leaping algorithm for distribution feeder reconfiguration. *Engineering Applications of Artificial Intelligence*, Elsevier, v. 23, n. 8, p. 1340–1349, 2010. Nenhuma citação no texto.

NIKNAM, T.; FARSANI, E. A.; NAYERIPOUR, M. An efficient multi-objective modified shuffled frog leaping algorithm for distribution feeder reconfiguration problem. *European Transactions on Electrical Power*, Wiley Online Library, v. 21, n. 1, p. 721–739, 2011. Nenhuma citação no texto.

OLAMAEI, J.; NIKNAM, T.; GHAREHPETIAN, G. Application of particle swarm optimization for distribution feeder reconfiguration considering distributed generators. *Applied Mathematics and computation*, Elsevier, v. 201, n. 1-2, p. 575–586, 2008. Nenhuma citação no texto.

OLIVEIRA, M. B. C. d. Reconfiguração de alimentadores em sistemas de distribuição usando a metaheurística grasp. Universidade Estadual Paulista (UNESP), 2011. Nenhuma citação no texto.

PEREIRA, M. A. Conjuntos nebulosos e algoritmos geneticos aplicados a restauração de redes de distribuição de energia elétrica. Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de Computação, Campinas, SP., 2000. Nenhuma citação no texto.

PICEK, S.; GOLUB, M. On the efficiency of crossover operators in genetic algorithms with binary representation. In: *Proceedings of the 11th WSEAS International Conference on Neural Networks*. [S.I.: s.n.], 2010. Nenhuma citação no texto.

PRODIST, A. Agência Nacional de Energia Elétrica-Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional, Módulo 1–Introdução. [S.l.]: Revisão 10, 2018. Nenhuma citação no texto.

RAO, R. S.; NARASIMHAM, S.; RAMALINGARAJU, M. Optimization of distribution network configuration for loss reduction using artificial bee colony algorithm. *International Journal of Electrical Power and Energy Systems Engineering*, v. 1, n. 2, p. 116–122, 2008. Nenhuma citação no texto.

RAO, R. S. et al. Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation. *IEEE transactions on power systems*, IEEE, v. 28, n. 1, p. 317–325, 2012. Nenhuma citação no texto.

SANTOS, E. O.; MARTINS, J. S. Distribution power network reconfiguration in the smart grid. *arXiv preprint arXiv:1806.07913*, 2018. Nenhuma citação no texto.

SAU, R. F. G. Alocação otimizada de indicadores de falta em redes de distribuição de energia elétrica considerando a presença de geradores distribuídos. Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação, Campinas, SP., 2016. Nenhuma citação no texto.

SHIRMOHAMMADI, D.; HONG, H. W. Reconfiguration of electric distribution networks for resistive line losses reduction. *IEEE Transactions on Power Delivery*, IEEE, v. 4, n. 2, p. 1492–1498, 1989. Nenhuma citação no texto.

SHIRMOHAMMADI, D. et al. A compensation-based power flow method for weakly meshed distribution and transmission networks. *IEEE Transactions on power systems*, IEEE, v. 3, n. 2, p. 753–762, 1988. Nenhuma citação no texto.

SOUZA, S. S. F. d. Algoritmo grasp especializado aplicado ao problema de reconfiguração de alimentadores em sistemas de distribuição radial. Universidade Estadual Paulista (UNESP), 2013. Nenhuma citação no texto.

STOTT, B. Decoupled newton load flow. *IEEE Transactions on Power Apparatus and Systems*, IEEE, n. 5, p. 1955–1959, 1972. Nenhuma citação no texto.

SU, C.-T.; CHANG, C.-F.; CHIOU, J.-P. Distribution network reconfiguration for loss reduction by ant colony search algorithm. *Electric Power Systems Research*, Elsevier, v. 75, n. 2-3, p. 190–199, 2005. Nenhuma citação no texto.

TINNEY, W. F.; HART, C. E. Power flow solution by newton's method. *IEEE Transactions on Power Apparatus and systems*, Ieee, n. 11, p. 1449–1460, 1967. Nenhuma citação no texto.

WANG, C.; CHENG, H. Z. Optimization of network configuration in large distribution systems using plant growth simulation algorithm. *IEEE Transactions on Power Systems*, IEEE, v. 23, n. 1, p. 119–126, 2008. Nenhuma citação no texto.

WU, Y.-K. et al. Study of reconfiguration for the distribution system with distributed generators. *IEEE transactions on Power Delivery*, IEEE, v. 25, n. 3, p. 1678–1685, 2010. Nenhuma citação no texto.

Apêndices

APÊNDICE A – Algoritmos Evolutivos

Apresenta-se aqui os conceitos básicos sobre AE's, suas etapas além dos operadores genéticos que podem causar o fenônome de infactibilidade em determinados tipos de problemas, como o de RSDR.

A.1 Algoritmos Genéticos

A partir do ano de 1957 com as publicações inovadoras do geneticista Alex Fraser (FRASER, 1957) a comunidade científica passou a se aprofundar na modelagem genética de populações, fato que ganhou mais publicidade após os trabalhos de (HOLLAND et al., 1992) e seu conhecido Teorema dos esquemas.

Os AG's podem ser definidos como algoritmos de busca/otimização inspirados na seleção natural e genética. Na Teoria Evolucionista de Charles Darwin, as espécies evoluem pelo princípio de seleção natural e sobrevivência dos indivíduos mais adaptados, os quais apresentam as melhores soluções.

Durante o processo evolutivo, cada indivíduo é avaliado por meio da atribuição de uma nota, que avalia sua capacidade de adaptação frente a um determinado objetivo. No decorrer da evolução do AE os indivíduos podem sofrer, por meio de cruzamentos e mutações, modificações em suas características ao longo da evolução da população.

Antes de se detalhar as etapas do funcionamento de AG, o entendimento de alguns termos é necessário:

- *Gene*: corresponde à unidade de valor básica do problema, representando uma característica unívoca de uma solução na população;
- *Cromossomo*: equivale à codificação de um indivíduo que pode ser realizada de diversas formas;
- *Indivíduo*: corresponde a 01 ou mais cromossomos. Representa as potenciais soluções de um determinado problema;
- População: é um conjunto de indivíduos/soluções;
- *Geração*: também conhecida como época, representa uma iteração completa de todas as etapas de um AG.

Na Figura 26 encontram-se as etapas envolvidas em um AG durante a evolução de uma população ao longo do tempo/gerações. Seu funcionamento pode ser descrito a seguir:

Figura 26 – Etapas de um Algoritmo Genético.

- 1. *Inicializar população*: nesta etapa é criado um conjunto de soluções aleatórias oriundas do espaço de busca do problema;
- 2. *Selecionar e avaliar*: as soluções são avaliadas com base em uma nota, denominada *fitness*, que representa sua capacidade de adaptação frente a determinado problema;
- Critério de parada: após a avaliação da população deve-se verificar se determinado objetivo foi alcançado. Os critérios de parada mais comuns são: número de gerações máximas, número de avaliações máximas e *fitness* alvo alcançado;
- Seleção: uma porcentagem da população é selecionada com base em seu *fitness*, os mais adaptados têm maiores chances de serem selecionados e perpetuarem suas características;
- 5. *Cruzamento*: os indivíduos selecionados na etapa anterior irão trocar seus genes um com o outro, geralmente dois a dois. Após o cruzamento novos indivíduos são gerados com genes dos dois indivíduos que os gerou. Segundo (GOLDBERG, 1994), esta etapa é responsável por um maior *exploration* do espaço de busca;
- 6. Mutação: nesta etapa, existe a possibilidade de alteração dos genes dos novos indivíduos gerados na etapa anterior; O autor em (GOLDBERG, 1994) relata que a etapa de mutação é capaz de realizar uma busca local, auxiliando a fuga de soluções sub-ótimas, fenômeno denominado exploitation;

7. *Guardar população*: caso algum dos critérios de parada citados anteriormente seja alcançado o algoritmo para de realizar a evolução da população, salvando os últimos indivíduo da população corrente.

APÊNDICE B – Sistema de 33 barras

Apresenta 37 linhas, 32 barras de carga (PQ) e uma barra *slack* ou de referência. A tensão da subestação é de 1.0 p.u., apresenta tensão base de 12.66 kV, potência base de 100000 kVA. Os dados das linhas e barras seguem a seguir:

B	ARR	AS	LINHAS			
ID	Р	Q	DE	PARA	R	X
1	0	0	1	2	0.0922	0.0470
2	100	60	2	3	0.4930	0.2511
3	90	40	3	4	0.3660	0.1864
4	120	80	4	5	0.3811	0.1941
5	60	30	5	6	0.8190	0.7070
6	60	20	6	7	0.1872	0.6188
7	200	100	7	8	0.7114	0.2351
8	200	100	8	9	10.300	0.7400
9	60	20	9	10	10.440	0.7400
10	60	20	10	11	0.1966	0.0650
11	45	30	11	12	0.3744	0.1238
12	60	35	12	13	14.680	11.550
13	60	35	13	14	0.5416	0.7129
14	120	80	14	15	0.5910	0.5260
15	60	10	15	16	0.7463	0.5450
16	60	20	16	17	12.890	17.210
17	60	20	17	18	0.7320	0.5740
18	90	40	2	19	0.1640	0.1565
19	90	40	19	20	15.042	13.554
20	90	40	20	21	0.4095	0.4784
21	90	40	21	22	0.7089	0.9373
22	90	40	3	23	0.4512	0.3083
23	90	50	23	24	0.8980	0.7091
24	420	200	24	25	0.8960	0.7011
25	420	200	6	26	0.2030	0.1034
26	60	25	26	27	0.2842	0.1447
27	60	25	27	28	10.590	0.9337
28	60	20	28	29	0.8042	0.7006
29	120	70	29	30	0.5075	0.2585
30	200	600	30	31	0.9744	0.9630

BARRAS				LIN	NHAS	
31	150	70	31	32	0.3105	0.3619
32	210	100	32	33	0.3410	0.5302
33	60	40	8	21	20.000	20.000
			9	15	20.000	20.000
			12	22	20.000	20.000
			18	33	0.5000	0.5000
			25	29	0.5000	0.5000

Tabela 17 continuação da página anterior

APÊNDICE C – Sistema de 84 barras

Apresenta 96 linhas, 83 barras de carga (PQ) e uma barra *slack* ou de referência. A tensão da subestação é de 1.0 p.u., apresenta tensão base de 11.4 kV, potência base de 100000 kVA. Os dados das linhas e barras seguem a seguir:

]	BARR	\mathbf{AS}	LINHAS				
ID	Р	\mathbf{Q}	DE	PARA	R	X	
1	0	0	1	2	0.1944	0.6624	
2	0	0	2	3	0.2096	0.4304	
3	100	50	3	4	0.2358	0.4842	
4	300	200	4	5	0.0917	0.1883	
5	350	250	5	6	0.2096	0.4304	
6	220	100	6	7	0.0393	0.0807	
7	1100	800	7	8	0.0405	0.138	
8	400	320	8	9	0.1048	0.2152	
9	300	200	8	10	0.2358	0.4842	
10	300	230	8	11	0.1048	0.2152	
11	300	260	1	12	0.0786	0.1614	
12	0	0	12	13	0.3406	0.6944	
13	1200	800	13	14	0.0262	0.0538	
14	800	600	13	15	0.0786	0.1614	
15	700	500	1	16	0.1134	0.3864	
16	0	0	16	17	0.0524	0.1076	
17	300	150	17	18	0.0524	0.1076	
18	500	350	18	19	0.1572	0.3228	
19	700	400	19	20	0.0393	0.0807	
20	1200	1000	20	21	0.1703	0.3497	
21	300	300	21	22	0.2358	0.4842	
22	400	350	22	23	0.1572	0.3228	
23	50	20	22	24	0.1965	0.4035	
24	50	20	24	25	0.131	0.269	
25	50	10	1	26	0.0567	0.1932	
26	50	30	26	27	0.1048	0.2152	
27	100	60	27	28	0.2489	0.5111	
28	100	70	28	29	0.0486	0.1656	
29	1800	1300	29	30	0.131	0.269	

	BARR	AS		LI	NHAS	
30	200	120	1	31	0.1965	0.396
31	0	0	31	32	0.131	0.269
32	1800	1600	32	33	0.131	0.269
33	200	150	33	34	0.0262	0.0538
34	200	100	34	35	0.1703	0.3497
35	800	600	35	36	0.0524	0.1076
36	100	60	36	37	0.4978	10.222
37	100	60	37	38	0.0393	0.0807
38	20	10	38	39	0.0393	0.0807
39	20	10	39	40	0.0786	0.1614
40	20	10	40	41	0.2096	0.4304
41	20	10	39	42	0.1965	0.4035
42	200	160	42	43	0.2096	0.4304
43	50	30	1	44	0.0486	0.1656
44	0	0	44	45	0.0393	0.0807
45	30	20	45	46	0.131	0.269
46	800	700	46	47	0.2358	0.4842
47	200	150	1	48	0.243	0.828
48	0	0	48	49	0.0655	0.1345
49	0	0	49	50	0.0655	0.1345
50	0	0	50	51	0.0393	0.0807
51	200	160	51	52	0.0786	0.1614
52	800	600	52	53	0.0393	0.0807
53	500	300	53	54	0.0786	0.1614
54	500	350	54	55	0.0524	0.1076
55	500	300	55	56	0.131	0.269
56	200	80	1	57	0.2268	0.7728
57	0	0	57	58	0.5371	11.029
58	30	20	58	59	0.0524	0.1076
59	600	420	59	60	0.0405	0.138
60	0	0	60	61	0.0393	0.0807
61	20	10	61	62	0.0262	0.0538
62	20	10	62	63	0.1048	0.2152
63	200	130	63	64	0.2358	0.4842
64	300	240	64	65	0.0243	0.0828
65	300	200	1	66	0.0486	0.1656

Tabela 18 continuação da página anterior6

				-	0	
]	BARR	\mathbf{AS}		\mathbf{LII}	NHAS	
66	0	0	66	67	0.1703	0.3497
67	50	30	67	68	0.1215	0.414
68	0	0	68	69	0.2187	0.7452
69	400	360	69	70	0.0486	0.1656
70	0	0	70	71	0.0729	0.2484
71	0	0	71	72	0.0567	0.1932
72	2000	1500	72	73	0.0262	0.0528
73	200	150	1	74	0.324	1.104
74	0	0	74	75	0.0324	0.1104
75	0	0	75	76	0.0567	0.1932
76	1200	950	76	77	0.0486	0.1656
77	300	180	1	78	0.2511	0.8556
78	0	0	78	79	0.1296	0.4416
79	400	360	79	80	0.0486	0.1656
80	2000	1300	80	81	0.131	0.264
81	200	140	81	82	0.131	0.264
82	500	360	82	83	0.0917	0.1883
83	100	30	83	84	0.3144	0.6456
84	400	360	6	56	0.131	0.269
			8	61	0.131	0.269
			12	44	0.131	0.269
			13	73	0.3406	0.6994
			14	77	0.4585	0.9415
			15	19	0.5371	10.824
			17	27	0.0917	0.1883
			21	84	0.0786	0.1614
			29	33	0.0524	0.1076
			30	40	0.0786	0.1614
			35	47	0.0262	0.0538
			41	43	0.1965	0.4035

Tabela 18 continuação da página anterior6

APÊNDICE D – Sistema de 136 barras

Apresenta 156 linhas, 135 barras de carga (PQ) e uma barra *slack* ou de referência. A tensão da subestação é de 1.0 p.u., apresenta tensão base de 13.8 kV, potência base de 100000 kVA. Os dados das linhas e barras seguem a seguir:

BARRAS				LIN	NHAS	
ID	Р	Q	DE	PARA	R	X
1	0.0	0.0	1	2	0.33205	0.76653
2	0.0	0.0	2	3	0.00188	0.00433
3	477.800	19.0090	3	4	0.22340	0.51535
4	425.510	16.9290	4	5	0.09943	0.22953
5	870.220	34.6220	5	6	0.15571	0.35945
6	311.310	123.855	6	7	0.16321	0.37677
7	148.869	59.2280	7	8	0.11444	0.26417
8	238.672	94.9560	7	9	0.05675	0.05666
9	622.990	24.7860	9	10	0.52124	0.27418
10	124.598	49.5710	9	11	0.10877	0.10860
11	140.175	55.7680	11	12	0.39803	0.20937
12	116.813	46.4740	11	13	0.91744	0.31469
13	249.203	99.1450	11	14	0.11823	0.11805
14	291.447	115.952	14	15	0.50228	0.26421
15	303.720	120.835	14	16	0.05675	0.05666
16	215.396	85.6950	16	17	0.23379	0.15454
17	198.586	79.0070	1	18	0.33205	0.76653
18	0.0	14.7290	18	19	0.00188	0.00433
19	0.0	112.920	19	20	0.22324	0.51535
20	0.0	29.458	20	21	0.10881	0.25118
21	301.270	112.920	21	22	0.71078	0.37388
22	230.972	58.915	21	23	0.18197	0.42008
23	602.560	27.8570	23	24	0.30326	0.15952
24	230.972	178.281	23	25	0.02439	0.05630
25	120.507	60.939	25	26	0.04502	0.10394
26	0.0	27.857	26	27	0.01876	0.04331
27	569.810	193.960	27	28	0.11823	0.11805
28	364.665	88.5630	28	29	0.02365	0.02361
29	0.0	118.395	29	30	0.18954	0.09970

	Tabela	19 Collelliu	açau (ia pagn		<u>, 1</u>
	BARR	AS		LI	NHAS	
30	124.647	49.971	30	31	0.39803	0.20937
31	569.810	73.034	29	32	0.05675	0.05666
32	0.0	194.388	32	33	0.09477	0.04985
33	854.730	111.473	33	34	0.41699	0.21934
34	0.0	99.942	34	35	0.11372	0.05982
35	396.735	46.298	32	36	0.07566	0.07555
36	0.0	109.570	36	37	0.36960	0.19442
37	181.152	63.819	37	38	0.26536	0.13958
38	242.172	93.552	36	39	0.05675	0.05666
39	753.160	96.098	1	40	0.33205	0.76653
40	0.0	116.974	40	41	0.11819	0.27283
41	1.254	41.285	41	42	296.288	101.628
42	6.274	70.184	41	43	0.00188	0.00433
43	0.0	86.698	43	44	0.06941	0.16024
44	117.880	161.5235	44	45	0.81502	0.42872
45	62.668	42.468	44	46	0.06378	0.14724
46	172.285	60.417	46	47	0.13132	0.30315
47	458.556	127.366	47	48	0.06191	0.14291
48	262.962	59.873	48	49	0.11444	0.26417
49	235.761	118.631	49	50	0.28374	0.28331
50	0.0	103.371	50	51	0.28374	0.28321
51	109.215	105.025	49	52	0.04502	0.10394
52	0.0	482.108	52	53	0.02626	0.06063
53	72.809	194.296	53	54	0.06003	0.13858
54	258.473	163.290	54	55	0.03002	0.06929
55	69.169	98.369	55	56	0.02064	0.04764
56	21.843	60.119	53	57	0.10881	0.25118
57	0.0	638.634	57	58	0.25588	0.13460
58	20.527	132.694	58	59	0.41699	0.21934
59	150.548	85.815	59	60	0.50228	0.26421
60	220.687	66.584	60	61	0.33170	0.17448
61	92.384	106.041	61	62	0.20849	0.10967
62	0.0	60.214	48	63	0.13882	0.32047
63	226.693	71.121	1	64	0.00750	0.01732
64	0.0	111.431	64	65	0.27014	0.62362
65	294.016	121.877	65	66	0.38270	0.88346

Tabela 19 continuação da página anterior

	Tabela	19 continu	açao o	la pagn	ia anterio	or
	BARR	AS		LI	NHAS	
66	83.015	154.842	66	67	0.33018	0.76220
67	83.015	163.199	67	68	0.32830	0.75787
68	103.770	121.877	68	69	0.17072	0.39409
69	176.408	70.184	69	70	0.55914	0.29412
70	83.015	33.028	69	71	0.05816	0.13425
71	217.917	86.698	71	72	0.70130	0.36890
72	23.294	9.267	72	73	102.352	0.53839
73	5.075	2.019	71	74	0.06754	0.15591
74	72.638	28.899	74	75	132.352	0.45397
75	405.990	1.615.235	1	76	0.01126	0.02598
76	0.0	0.0	76	77	0.72976	168.464
77	100.182	42.468	77	78	0.22512	0.51968
78	142.523	60.417	78	79	0.20824	0.48071
79	96.042	40.713	79	80	0.04690	0.10827
80	300.454	127.366	80	81	0.61950	0.61857
81	141.238	59.873	81	82	0.34049	0.33998
82	279.847	118.631	82	83	0.56962	0.29911
83	87.312	37.013	82	84	0.10877	0.10860
84	243.849	103.371	84	85	0.56862	0.29911
85	247.750	105.025	1	86	0.01126	0.02598
86	0.0	0.0	86	87	0.41835	0.96575
87	89.878	38.101	87	88	0.10499	0.13641
88	1.137.280	482.108	87	89	0.43898	101.338
89	458.339	194.296	89	90	0.07520	0.02579
90	385.197	163.290	90	91	0.07692	0.17756
91	0.0	0.0	91	92	0.33205	0.76653
92	79.608	33.747	92	93	0.08442	0.19488
93	87.312	37.013	93	94	0.13320	0.30748
94	0.0	0.0	94	95	0.29320	0.29276
95	74.001	31.370	95	96	0.21753	0.21721
96	232.050	98.369	96	97	0.26482	0.26443
97	141.819	60.119	94	98	0.10318	0.23819
98	0.0	0.0	98	99	0.13507	0.31181
99	76.449	32.408	1	100	0.00938	0.02165
100	0.0	0.0	100	101	0.16884	0.38976
101	51.322	21.756	101	102	0.11819	0.27283

.+:. ñ óci ntori Tabola 10 a.

	BARR	AS	LINHAS								
102	59.874	25.381	102	103	228.608	0.78414					
103	9.065	3.843	102	104	0.45587	105.236					
104	2.092	0.887	104	105	0.69600	160.669					
105	16.254	0.531	105	106	0.45774	105.669					
106	1.506.522	638.634	106	107	0.20298	0.26373					
107	313.023	132.694	107	108	0.21348	0.27737					
108	79.831	33.842	108	109	0.54967	0.28914					
109	51.322	21.756	109	110	0.54019	0.28415					
110	0.0	0.0	108	111	0.04550	0.05911					
111	202.435	85.815	111	112	0.47385	0.24926					
112	60.823	25.874	112	113	0.86241	0.45364					
113	45.618	19.338	113	114	0.56862	0.29911					
114	0.0	0.0	109	115	0.77711	0.40878					
115	157.070	66.584	115	116	108.038	0.56830					
116	0.0	0.0	110	117	106.633	0.57827					
117	250.148	106.041	117	118	0.47385	0.24926					
118	0.0	0.0	105	119	0.32267	0.74488					
119	69.809	28.593	119	120	0.14633	0.33779					
120	32.072	13.596	120	121	0.12382	0.28583					
121	61.084	25.894	1	122	0.01126	0.02598					
122	0.0	0.0	122	123	0.64910	149.842					
123	94.622	46.260	123	124	0.04502	0.10394					
124	49.858	24.375	124	125	0.52640	0.18056					
125	123.164	60.214	124	126	0.02064	0.04764					
126	78.350	38.304	126	127	0.53071	0.27917					
127	145.475	71.121	126	128	0.09755	0.22520					
128	21.369	10.447	128	129	0.11819	0.27283					
129	74.789	36.564	128	130	0.13882	0.32047					
130	227.926	111.431	130	131	0.04315	0.09961					
131	35.614	17.411	131	132	0.09192	0.21220					
132	249.295	121.877	132	133	0.16134	0.37244					
133	316.722	154.842	133	134	0.37832	0.37775					
134	333.817	163.199	134	135	0.39724	0.39664					
135	249.295	121.877	135	136	0.29276	0.29276					
136	0.0	0.0	8	74	0.13132	0.30315					
			10	25	0.26536	0.13958					

Tabela 19 continuação da página anterior

	-			
BARRAS		LIN	IHAS	
	16	84	0.14187	0.14166
	39	136	0.08512	0.08499
	26	52	0.04550	0.10394
	51	97	0.14187	0.14166
	56	99	0.14187	0.14166
	63	121	0.03940	0.09094
	67	80	0.12944	0.29882
	80	132	0.01688	0.03898
	85	136	0.33170	0.17448
	92	105	0.14187	0.17166
	91	130	0.07692	0.17756
	91	104	0.07692	0.17756
	93	105	0.07692	0.17756
	93	133	0.07692	0.17756
	97	121	0.26482	0.26443
	111	48	0.49696	0.64670
	127	77	0.17059	0.08973
	129	78	0.05253	0.12126
	136	99	0.29320	0.29276

Tabela 19 continuação da página anterior

APÊNDICE E – Sistema de 417 barras

Apresenta 473 linhas, 414 barras de carga (PQ) e uma barra *slack* ou de referência. A tensão da subestação é de 1.0 p.u., apresenta tensão base de 11.4 kV, potência base de 100000 kVA. Os dados das linhas e barras seguem a seguir:

BARRAS			LINHAS				
ID	Р	Q	DE	PARA	R	X	
1	0.1	0	384	68	0.0310675	0.0214200	
2	0.1	0	89	67	0.1078225	0.0743400	
3	122	59	225	224	0.0694450	0.0478800	
4	0.1	0	21	72	0.1937150	0.1335600	
5	0.1	0	66	384	0.0347225	0.0239400	
6	114	55	3	20	0.6103850	0.4208400	
7	51	25	224	222	0.0694450	0.0478800	
8	83	40	72	74	0.0219300	0.0151200	
9	0.1	0	70	382	0.0310675	0.0214200	
10	122	59	20	51	0.0877200	0.0604800	
11	122	59	222	221	0.0877200	0.0604800	
12	77	37	76	72	0.0548250	0.0378000	
13	0.1	0	382	66	0.0328950	0.0226800	
14	68	33	51	52	0.0694450	0.0478800	
15	71	34	221	220	0.0840650	0.0579600	
16	0.1	0	75	81	0.0840650	0.0579600	
17	0.1	0	59	70	0.0537285	0.0370440	
18	77	37	52	56	0.1169600	0.0806400	
19	30	14	1	273	0.0142545	0.0098280	
20	13	6	81	76	0.0529975	0.0365400	
21	1	0	68	85	0.0292400	0.0201600	
22	194	94	56	27	0.0950300	0.0655200	
23	77	37	1	274	0.1154980	0.0796320	
24	77	37	74	75	0.1059950	0.0730800	
25	77	37	68	93	0.0840650	0.0579600	
26	122	59	27	31	0.1023400	0.0705600	
27	104	51	274	275	0.0836995	0.0577080	
28	0.1	0	72	73	0.0986850	0.0680400	
29	77	37	60	58	0.0109650	0.0075600	

В	ARR	AS	LINHAS				
	249	110	01	10			
30	243	118	31	40	0.1059950	0.0730800	
31		37	275	209	0.1396210	0.0962640	
32	77	37	73	80	0.0731000	0.0504000	
33	0.1	0	65	71	0.0712725	0.0491400	
34	121	58	40	47	0.0913750	0.0630000	
35	194	94	275	276	0.1158635	0.0798840	
36	122	59	73	77	0.0767550	0.0529200	
37	77	37	69	65	0.0310675	0.0214200	
38	0.1	0	51	54	0.0548250	0.0378000	
39	0.1	0	276	264	0.1151325	0.0793800	
40	96	47	77	78	0.0511700	0.0352800	
41	122	59	59	69	0.0211990	0.0146160	
42	70	34	54	24	0.0731000	0.0504000	
43	58	28	263	264	0.0687140	0.0473760	
44	0.1	0	79	83	0.2412300	0.1663200	
45	122	59	63	61	0.1096500	0.0756000	
46	122	59	24	29	0.0950300	0.0655200	
47	122	59	262	263	0.0630936	0.0532656	
48	86	42	82	80	0.0731000	0.0504000	
49	77	37	71	63	0.0226610	0.0156240	
50	0.1	0	29	34	0.1151325	0.0793800	
51	122	59	261	262	0.0379730	0.0320580	
52	122	59	78	79	0.0219300	0.0151200	
53	122	59	61	60	0.0438600	0.0302400	
54	0.1	0	34	47	0.1736125	0.1197000	
55	42	20	259	261	0.0511175	0.0431550	
56	122	59	83	90	0.1209805	0.0834120	
57	13	6	58	62	0.1293870	0.0892080	
58	77	37	47	21	0.0840650	0.0579600	
59	50	24	257	259	0.0687140	0.0473760	
60	0.1	0	77	59	0.3874300	0.2671200	
61	60	29	64	67	0.0449565	0.0309960	
62	71	34	20	44	0.0146200	0.0100800	
63	122	59	372	239	0.0265811	0.0224406	
64	77	37	123	1	0.0135240	0.0159530	
65	95	46	67	68	0.0862580	0.0594720	

Tabela 20 continuação da página anterior

	Laber	a 20	contin	uaçao c		
B	ARR	\mathbf{AS}]	LINHAS	
66	121	58	44	25	0.1279250	0.0882000
67	77	37	264	265	0.0723690	0.0498960
68	103	50	120	94	0.2538284	0.2584552
69	52	25	62	64	0.0603075	0.0415800
70	57	27	25	35	0.1279250	0.0882000
71	171	83	369	347	0.1315800	0.0907200
72	121	58	120	123	0.2948750	0.3002500
73	39	19	58	20	0.5921100	0.4082400
74	119	58	35	38	0.0804100	0.0554400
75	49	24	369	370	0.2083350	0.1436400
76	0.1	0	114	115	0.0475150	0.0327600
77	50	24	1	92	0.3888920	0.2681280
78	44	21	38	41	0.1041675	0.0718200
79	82	40	370	348	0.1187875	0.0819000
80	132	64	115	112	0.0402050	0.0277200
81	194	94	92	2	0.3410115	0.2351160
82	0.1	0	41	43	0.1169600	0.0806400
83	122	59	383	251	0.0109650	0.0075600
84	3	1	94	113	0.0328950	0.0226800
85	52	25	92	87	0.0128524	0.0108504
86	103	50	43	48	0.0804100	0.0554400
87	21	10	383	370	0.0182750	0.0126000
88	21	10	113	114	0.0767550	0.0529200
89	21	10	2	17	0.0877200	0.0604800
90	5	3	48	50	0.0731000	0.0504000
91	0.1	0	208	277	0.0672520	0.0463680
92	0.1	0	106	95	0.0840650	0.0579600
93	21	10	6	7	0.0402050	0.0277200
94	18	9	20	33	0.0657900	0.0453600
95	122	59	277	278	0.0328950	0.0226800
96	116	56	95	112	0.0328950	0.0226800
97	7	3	7	3	0.0519010	0.0357840
98	64	31	84	33	0.0420325	0.0289800
99	49	24	277	279	0.0482460	0.0332640
100	16	8	94	111	0.0657900	0.0453600
101	77	37	18	5	0.1224425	0.0844200

Tabela 20 continuação da página anterior

-				iuuyuo (
BARRAS					LINHAS	
102	119	58	28	36	0.0913750	0.0630000
103	71	34	279	280	0.0343570	0.0236880
104	77	37	111	106	0.0657900	0.0453600
105	194	94	5	6	0.0493425	0.0340200
106	122	59	36	45	0.1315800	0.0907200
107	55	27	280	281	0.0621350	0.0428400
108	38	18	119	121	0.0102235	0.0086310
109	22	10	17	18	0.1169600	0.0806400
110	0.1	0	49	45	0.0438600	0.0302400
111	77	37	281	235	0.0493425	0.0340200
112	122	59	94	119	0.0560280	0.0660910
113	38	18	2	14	0.0164475	0.0113400
114	122	59	55	23	0.0767550	0.0529200
115	27	13	281	282	0.0537285	0.0370440
116	64	31	118	84	0.0402050	0.0277200
117	0.1	0	8	9	0.0950300	0.0655200
118	0.1	0	23	28	0.0694450	0.0478800
119	0.1	0	235	234	0.0833340	0.0574560
120	0.1	0	119	122	0.0511700	0.0352800
121	79	38	9	3	0.0146200	0.0100800
122	247	119	33	55	0.0438600	0.0302400
123	0.1	0	235	236	0.0420325	0.0289800
124	0.1	0	122	118	0.2010250	0.1386000
125	0.1	0	16	19	0.1571650	0.1083600
126	0.1	0	21	50	0.0365500	0.0252000
127	0.1	0	208	236	0.0767550	0.0529200
128	0.1	0	104	105	0.0496570	0.0419220
129	77	37	19	8	0.0219300	0.0151200
130	122	59	32	44	0.2558500	0.1764000
131	62	30	232	349	0.0759460	0.0641160
132	105	51	84	104	0.0731000	0.0504000
133	122	59	14	16	0.0986850	0.0680400
134	77	37	37	32	0.1059950	0.0730800
135	77	37	349	207	0.0321310	0.0271260
136	0.1	0	105	108	0.0657900	0.0453600
137	85	41	2	13	0.0321310	0.0271260

Tabela 20 continuação da página anterior

	Laber	a 20					
B	ARR	\mathbf{AS}	LINHAS				
138	8	4	42	37	0.0676175	0.0466200	
139	122	59	380	229	0.0411861	0.0347706	
140	35	17	109	108	0.0496570	0.0419220	
141	55	27	4	12	0.0671830	0.0567180	
142	153	74	46	42	0.0255850	0.0176400	
143	316	153	229	228	0.0630936	0.0532656	
144	105	51	84	109	0.0475150	0.0327600	
145	20	10	12	15	0.1051560	0.0887760	
146	95	46	46	50	0.0365500	0.0252000	
147	38	18	232	231	0.0968575	0.0667800	
148	83	40	110	84	0.0438600	0.0302400	
149	50	24	15	11	0.1329055	0.1122030	
150	77	37	21	49	0.1352350	0.0932400	
151	122	59	232	293	0.0749275	0.0516600	
152	102	49	103	110	0.0767550	0.0529200	
153	60	29	13	4	0.0452755	0.0382230	
154	77	37	39	30	0.1169600	0.0806400	
155	194	94	293	236	0.0694450	0.0478800	
156	56	27	107	103	0.0548250	0.0378000	
157	122	59	11	86	0.0350520	0.0295920	
158	0.1	0	49	39	0.0877200	0.0604800	
159	3	1	221	344	0.0292400	0.0201600	
160	1	0	84	107	0.0657900	0.0453600	
161	52	25	86	91	0.0950300	0.0655200	
162	194	94	53	22	0.0402050	0.0277200	
163	10	5	304	306	0.0694450	0.0478800	
164	128	62	97	116	0.0438600	0.0302400	
165	16	8	10	11	0.0467360	0.0394560	
166	37	18	30	26	0.0548250	0.0378000	
167	154	75	378	377	0.1114775	0.0768600	
168	0.1	0	84	99	0.1315800	0.0907200	
169	0.1	0	3	10	0.1078225	0.0743400	
170	78	38	26	53	0.1005125	0.0693000	
171	0.1	0	304	378	0.0588455	0.0405720	
172	27	13	101	96	0.1059950	0.0730800	
173	103	50	10	88	0.1095375	0.0924750	

Tabela 20 continuação da página anterior

	Laber	a 20	contin	iuaçao (
B	ARR	AS]	LINHAS	
174	122	59	22	33	0.0438600	0.0302400
175	72	35	309	307	0.0986850	0.0680400
176	0.1	0	100	101	0.0584800	0.0403200
177	122	59	88	89	0.0804100	0.0554400
178	194	94	21	57	0.2156450	0.1486800
179	0.1	0	314	317	0.0815065	0.0561960
180	77	37	102	100	0.0548250	0.0378000
181	82	40	99	102	0.0511700	0.0352800
182	53	26	187	167	0.0847090	0.0715140
183	122	59	314	318	0.0723690	0.0498960
184	64	31	138	194	0.0127925	0.0088200
185	86	42	96	117	0.0785825	0.0541800
186	82	40	167	175	0.0905510	0.0764460
187	0.1	0	301	305	0.0438600	0.0302400
188	167	81	155	151	0.0694450	0.0478800
189	0.1	0	117	97	0.0402050	0.0277200
190	0.1	0	175	181	0.0847090	0.0715140
191	131	64	310	315	0.0614040	0.0423360
192	21	10	126	124	0.0292400	0.0201600
193	21	10	98	94	0.0402050	0.0277200
194	21	10	160	180	0.0438600	0.0302400
195	21	10	310	305	0.0826030	0.0569520
196	0.1	0	1	351	0.2266100	0.1562400
197	0.1	0	116	98	0.0621350	0.0428400
198	0.1	0	180	177	0.0548250	0.0378000
199	0.1	0	129	346	0.2616980	0.1804320
200	0.1	0	1	350	0.2266100	0.1562400
201	52	25	57	147	0.1571650	0.1083600
202	202	98	169	162	0.0767550	0.0529200
203	202	98	90	370	0.1578960	0.1088640
204	73	35	350	203	0.0233920	0.0161280
205	81	39	153	141	0.0730250	0.0616500
206	115	56	162	183	0.0840650	0.0579600
207	118	57	382	383	0.1502205	0.1035720
208	318	154	351	379	0.0233920	0.0161280
209	161	78	147	142	0.1059950	0.0730800

Tabela 20 continuação da página anterior

	Laber	a 20	contin	luaçao c				
B	ARR	\mathbf{AS}	LINHAS					
210	126	61	183	182	0.0328950	0.0226800		
211	59	29	66	252	0.1929840	0.1330560		
212	24	12	203	204	0.0511175	0.0431550		
213	24	12	142	136	0.0804100	0.0554400		
214	5	2	160	181	0.0913750	0.0630000		
215	126	61	384	243	0.2273410	0.1567440		
216	56	27	204	205	0.0621350	0.0428400		
217	62	30	132	153	0.0877200	0.0604800		
218	0.1	0	181	178	0.0584800	0.0403200		
219	32	15	85	244	0.1399865	0.0965160		
220	158	77	203	206	0.1034034	0.0872964		
221	126	61	136	132	0.1498550	0.1033200		
222	202	98	171	163	0.0642620	0.0542520		
223	41	20	352	414	0.0705415	0.0486360		
224	81	39	379	380	0.1034034	0.0872964		
225	126	61	57	149	0.0694450	0.0478800		
226	202	98	163	184	0.0759460	0.0641160		
227	18	9	414	385	0.0720035	0.0496440		
228	202	98	206	207	0.0598805	0.0505530		
229	106	51	57	125	0.0913750	0.0630000		
230	175	85	160	129	0.2278380	0.1923480		
231	174	84	414	401	0.0727345	0.0501480		
232	113	55	1	375	0.0109650	0.0075600		
233	202	98	127	124	0.0292400	0.0201600		
234	0.1	0	129	141	0.0321310	0.0271260		
235	202	98	401	386	0.0592110	0.0408240		
236	403	195	208	209	0.0383775	0.0264600		
237	202	98	128	127	0.2704700	0.1864800		
238	126	61	131	157	0.0365500	0.0252000		
239	0.1	0	401	402	0.0709070	0.0488880		
240	29	14	209	210	0.1169600	0.0806400		
241	9	4	125	128	0.0219300	0.0151200		
242	5	2	130	131	0.0548250	0.0378000		
243	0.1	0	402	387	0.0566525	0.0390600		
244	18	9	209	211	0.0559215	0.0385560		
245	45	22	200	119	0.0767550	0.0529200		

Tabela 20 continuação da página anterior

	Laber	a 20	contin	iuaçao		
BARRAS					LINHAS	
246	32	16	141	130	0.0467360	0.0394560
247	61	30	402	403	0.0595765	0.0410760
248	81	39	211	1	0.0562870	0.0388080
249	126	61	200	201	0.0073100	0.0050400
250	23	11	157	133	0.1133050	0.0781200
251	14	7	403	388	0.0833340	0.0574560
252	18	9	375	202	0.1498550	0.1033200
253	126	61	158	200	0.0219300	0.0151200
254	5	3	133	140	0.1059950	0.0730800
255	26	13	403	404	0.0683485	0.0471240
256	18	9	202	1	0.4824600	0.3326400
257	126	61	124	158	0.1023400	0.0705600
258	81	39	140	147	0.1535100	0.1058400
259	0.1	0	368	345	0.1151325	0.0793800
260	126	61	373	352	0.1041675	0.0718200
261	41	20	199	192	0.0146200	0.0100800
262	0.1	0	129	154	0.0350520	0.0295920
263	28	14	345	346	0.0584800	0.0403200
264	30	14	352	212	0.1136705	0.0783720
265	81	39	199	197	0.0694450	0.0478800
266	202	98	137	144	0.0950300	0.0655200
267	318	154	345	369	0.0529975	0.0365400
268	176	85	352	353	0.2138175	0.1474200
269	126	61	159	199	0.2704700	0.1864800
270	6	3	144	148	0.0950300	0.0655200
271	31	15	400	404	0.0475150	0.0327600
272	60	29	353	213	0.2010250	0.1386000
273	56	27	197	191	0.0109650	0.0075600
274	126	61	154	156	0.0321310	0.0271260
275	118	57	404	405	0.0402050	0.0277200
276	126	61	353	214	0.0500735	0.0345240
277	202	98	159	190	0.2359000	0.2402000
278	10	5	156	137	0.0840650	0.0579600
279	126	61	405	389	0.0588455	0.0405720
280	202	98	1	215	0.3475905	0.2396520
281	318	154	159	161	0.0840650	0.0579600

Tabela 20 continuação da página anterior
-	Laber	a 20	comun	luaçao c	ia pagina ai	
BARRAS			LINHAS			
282	82	40	143	150	0.0986850	0.0680400
283	126	61	405	406	0.0716380	0.0493920
284	22	10	215	216	0.1059950	0.0730800
285	13	6	161	172	0.0877200	0.0604800
286	71	34	150	148	0.0219300	0.0151200
287	101	49	406	390	0.0453220	0.0312480
288	113	54	216	217	0.0993140	0.0838440
289	126	61	172	188	0.0913750	0.0630000
290	0.1	0	134	139	0.1197610	0.1011060
291	34	17	406	391	0.0731000	0.0504000
292	83	40	216	218	0.0657900	0.0453600
293	59	29	188	168	0.0913750	0.0630000
294	126	61	139	143	0.0621350	0.0428400
295	145	70	404	407	0.0833340	0.0574560
296	202	98	218	219	0.0029240	0.0020160
297	50	24	176	179	0.0657900	0.0453600
298	41	20	154	134	0.0788670	0.0665820
299	202	98	407	392	0.0785825	0.0541800
300	77	37	219	220	0.0804100	0.0554400
301	161	78	168	176	0.1133050	0.0781200
302	477	231	148	57	0.1462000	0.1008000
303	68	33	407	408	0.0489770	0.0337680
304	14	7	220	223	0.0709803	0.0599238
305	4	2	161	185	0.1315800	0.0907200
306	0.1	0	129	151	0.0328950	0.0226800
307	66	32	408	409	0.0668865	0.0461160
308	0.1	0	223	237	0.0817880	0.0690480
309	60	29	185	164	0.0913750	0.0630000
310	95	46	145	146	0.0328950	0.0226800
311	0.1	0	409	393	0.0738310	0.0509040
312	19	9	237	238	0.0622173	0.0525258
313	67	32	164	165	0.0328950	0.0226800
314	18	9	146	149	0.0548250	0.0378000
315	33	16	409	394	0.0690795	0.0476280
316	21	10	237	372	0.0537464	0.0453744
317	33	16	165	173	0.1388900	0.0957600

Tabela 20 continuação da página anterior

	Laber	a 20	comun	luação (
BARRAS			LINHAS			
318	42	20	152	135	0.0767550	0.0529200
319	52	25	408	410	0.0551905	0.0380520
320	43	21	239	240	0.0058420	0.0049320
321	126	61	173	179	0.1133050	0.0781200
322	107	52	135	145	0.1425450	0.0982800
323	202	98	410	415	0.0657900	0.0453600
324	126	61	239	243	0.0835406	0.0705276
325	24	12	179	160	0.0694450	0.0478800
326	101	49	135	195	0.0091375	0.0063000
327	81	39	410	411	0.0643280	0.0443520
328	155	75	243	355	0.0054825	0.0037800
329	23	11	159	182	0.0540960	0.0638120
330	31	15	151	152	0.0548250	0.0378000
331	126	61	411	395	0.0595765	0.0410760
332	13	6	355	354	0.1279250	0.0882000
333	56	27	182	186	0.0483000	0.0569750
334	120	58	1	190	0.1415400	0.1441200
335	126	61	411	412	0.0676175	0.0466200
336	403	195	354	242	0.0182750	0.0126000
337	81	39	186	166	0.0377440	0.0384320
338	177	86	190	189	0.0731000	0.0504000
339	151	73	412	399	0.0566525	0.0390600
340	9	4	354	241	0.0731000	0.0504000
341	29	14	166	170	0.0377440	0.0384320
342	14	7	189	198	0.1096500	0.0756000
343	23	11	412	398	0.0716380	0.0493920
344	45	22	243	356	0.0091375	0.0063000
345	0.1	0	170	174	0.0292100	0.0246600
346	36	17	198	196	0.0365500	0.0252000
347	5	2	412	413	0.0873545	0.0602280
348	9	4	356	357	0.0511700	0.0352800
349	80	39	174	180	0.0636930	0.0648540
350	0.1	0	189	193	0.0233920	0.0161280
351	0.1	0	413	397	0.0705415	0.0486360
352	0.1	0	357	244	0.0127925	0.0088200
353	0.1	0	159	184	0.2266100	0.1562400

Tabela 20 continuação da página anterior

	Laber	a 20	Jontinuação da pagina anterior			
BARRAS]	LINHAS	
354	0.1	0	149	138	0.1279250	0.0882000
355	0.1	0	413	396	0.0694450	0.0478800
356	0.1	0	357	245	0.0054825	0.0037800
357	0.1	0	184	187	0.0350520	0.0295920
358	0.1	0	138	155	0.1059950	0.0730800
359	0.1	0	290	289	0.0628660	0.0433440
360	0.1	0	243	246	0.0365125	0.0308250
361	0.1	0	246	247	0.0526320	0.0362880
362	0.1	0	265	266	0.1078225	0.0743400
363	0.1	0	289	288	0.0467840	0.0322560
364	0.1	0	306	310	0.1264630	0.0871920
365	0.1	0	247	248	0.0727345	0.0501480
366	0.1	0	266	267	0.0994160	0.0685440
367	0.1	0	288	300	0.1867705	0.1287720
368	0.1	0	310	320	0.0127925	0.0088200
369	0.1	0	243	249	0.0487807	0.0411822
370	0.1	0	267	268	0.1564340	0.1078560
371	0.1	0	300	286	0.1096500	0.0756000
372	0.1	0	310	314	0.0723690	0.0498960
373	0.1	0	249	358	0.0431290	0.0297360
374	0.1	0	268	269	0.0549647	0.0559666
375	0.1	0	1	373	0.0277780	0.0191520
376	0.1	0	314	309	0.0698105	0.0481320
377	86	41	358	359	0.0054825	0.0037800
378	86	41	269	365	0.0707700	0.0720600
379	0.1	0	300	285	0.0811410	0.0559440
380	0.1	0	309	313	0.0785825	0.0541800
381	0.1	0	359	250	0.0201025	0.0138600
382	0.1	0	365	366	0.0255850	0.0176400
383	0.1	0	300	301	0.0932025	0.0642600
384	0.1	0	313	317	0.0683485	0.0471240
385	68	33	359	251	0.1407175	0.0970200
386	15	7	366	270	0.1005125	0.0693000
387	56	27	301	302	0.0555560	0.0383040
388	12	6	317	319	0.1235390	0.0851760
389	50	24	251	252	0.1882325	0.1297800

Tabela 20 continuação da página anterior

ΒΑΚΚΑδ					LINHAS	
390	115	56	366	271	0.0164475	0.0113400
391	14	7	302	303	0.0453220	0.0312480
392	5	2	319	318	0.0665210	0.0458640
393	19	9	251	360	0.0986850	0.0680400
394	34	17	365	363	0.0483595	0.0492410
395	10	5	303	304	0.1951770	0.1345680
396	40	19	318	315	0.0694450	0.0478800
397	28	14	360	253	0.0497080	0.0342720
398	14	7	363	362	0.0188720	0.0192160
399	17	8	304	305	0.2083350	0.1436400
400	41	20	315	311	0.0833340	0.0574560
401	0.1	0	253	254	0.0458597	0.0387162
402	0.1	0	363	381	0.2631600	0.1814400
403	0.1	0	305	308	0.0504390	0.0347760
404	0.1	0	311	304	0.1052640	0.0725760
405	0.1	0	254	361	0.0588455	0.0405720
406	0.1	0	362	272	0.0164475	0.0113400
407	0.1	0	308	316	0.2218585	0.1529640
408	0.1	0	296	260	0.0478805	0.0330120
409	0.1	0	361	256	0.0402050	0.0277200
410	0.1	0	362	1	0.0241500	0.0284875
411	0.1	0	316	312	0.1052640	0.0725760
412	0.1	0	260	287	0.0358190	0.0246960
413	0.1	0	254	255	0.0274125	0.0189000
414	0.1	0	1	364	0.2850900	0.1965600
415	19	9	312	307	0.0723690	0.0498960
			260	324	0.1078225	0.0743400
			254	257	0.0788670	0.0665820
			364	284	0.1041675	0.0718200
			307	300	0.0782170	0.0539280
			324	326	0.0054825	0.0037800
			257	258	0.1059950	0.0730800
			364	285	0.0584800	0.0403200
			334	336	0.0712725	0.0491400
			324	266	0.1038020	0.0715680
			257	283	0.0537464	0.0453744

Tabela 20 continuação da página anterior

		3	10	
BARRAS]	LINHAS	
	381	268	0.3095785	0.2134440
	336	323	0.0548250	0.0378000
	324	325	0.0482460	0.0332640
	283	282	0.0663067	0.0559782
	268	327	0.0383775	0.0264600
	336	337	0.0646935	0.0446040
	324	323	0.0877200	0.0604800
	282	234	0.0554990	0.0468540
	327	328	0.0548250	0.0378000
	337	338	0.0292400	0.0201600
	323	322	0.0676175	0.0466200
	234	233	0.0277495	0.0234270
	268	297	0.0504390	0.0347760
	338	339	0.0420325	0.0289800
	322	321	0.0950300	0.0655200
	233	376	0.0116840	0.0098640
	297	296	0.0504390	0.0347760
	339	265	0.0679830	0.0468720
	321	299	0.0701760	0.0483840
	230	231	0.0455676	0.0384696
	296	295	0.0741965	0.0511560
	265	367	0.0087720	0.0060480
	299	296	0.0380120	0.0262080
	230	228	0.0262890	0.0221940
	296	298	0.0376465	0.0259560
	367	340	0.0010965	0.0007560
	322	329	0.0314330	0.0216720
	228	371	0.0467360	0.0394560
	295	294	0.0226610	0.0156240
	340	341	0.0274125	0.0189000
	329	330	0.0266815	0.0183960
	371	374	0.0394335	0.0332910
	294	292	0.0917405	0.0632520
	341	342	0.1133050	0.0781200
	330	331	0.0416670	0.0287280
	374	227	0.0036550	0.0025200

Tabela 20 continuação da página anterior

BARRAS	LINHAS			
	268	292	0.0986850	0.0680400
	334	335	0.0559215	0.0385560
	331	332	0.0274125	0.0189000
	374	226	0.0023368	0.0019728
	292	290	0.0168130	0.0115920
	341	368	0.1790950	0.1234800
	329	333	0.0584800	0.0403200
	226	225	0.0274125	0.0189000
	290	291	0.0054825	0.0037800
	376	230	0.0277495	0.0234270
	333	334	0.0416670	0.0287280
	368	343	0.0091375	0.0063000

Tabela 20 continuação da página anterior