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Abstract

Demand Response (DR) aims to motivate end consumers to change their energy
consumption patterns in response to changes in electricity prices or when the reliability
of the electrical power system (EPS) is compromised. Most of the recent studies show
that the main goal is to minimize the cost associated with the consumption of electric
energy without considering the preferences/needs of end consumers. Therefore, it is
possible to state that these works do not consider the real difficulty of the problem
which involves scheduling the use of home appliances and they do not evaluate
aspects such as: (a) different residential scenarios; (b) various categories of home
appliances; (c) the level of satisfaction/comfort of consumers with the new scheduling
of their home appliances. Moreover, the studies that dealt with the inconvenience
aspect performed simulations without considering the different categories of home
appliances, thus reducing the complexity of the method. However, this thesis proposes
a home energy management system (HEMS) that aims to schedule the use of each
home appliance based on the price of electricity in real-time (RTP) and on the
consumer satisfaction/comfort level in order to minimizing the cost associated to the
energy  consumption, as well as minimizing the inconvenience
(dissatisfaction/discomfort) of end consumers ensuring the stability and the safety of
the EPS. Therefore, the HEMS through the energy management controller (EMC)
determines an optimized timeline for each appliance through the multiobjective DR
model validated using Genetic Algorithm (GA), Particle Swarm Optimization (PSO),
Language for Interactive General Optimizer (LINGO) and Non-dominated Sorting
Genetic Algorithm Il (NSGA-II) optimization techniques, and thus ensures a more
economic scenario for end consumers. The results show that the HEMS achieved
reductions in the cost of electricity for all the Scenarios used while minimally affecting
the satisfaction/comfort of the end consumers as well as contemplating all the

restrictions.

Keywords: Demand Response; Energy Management; Load Scheduling; Optimization.



Resumo

A Demand Response (DR) visa motivar os consumidores finais a mudar seus padrées
de consumo de energia de elétrica em resposta as mudancas nos precos da
eletricidade ou quando a confiabilidade do sistema elétrico de poténcia (EPS) estiver
comprometida. A maioria dos estudos recentes mostram que o principal objetivo &
minimizar o custo associado ao consumo de energia elétrica sem considerar as
preferéncias/necessidades dos consumidores finais. Portanto, afirmar que esses
trabalhos nao consideram a real dificuldade do problema que envolve agendar o uso
dos aparelhos residenciais e ndo avaliam aspectos como: (a) diferentes cenarios
residenciais; (b) varias categorias de aparelhos residenciais; (c) o nivel de
satisfacdo/conforto dos consumidores com o novo agendamento de seus aparelhos.
Além disso, os estudos que trataram do aspecto da inconveniéncia realizaram
simulagdes sem levar em conta as diferentes categorias de aparelhos residenciais,
reduzindo, assim, a complexidade do método. No entanto, nesta tese propde-se um
sistema de gerenciamento de energia residencial (HEMS) que visa programar o uso
de cada aparelho residencial com base no prec¢o da eletricidade em tempo real (RTP)
e no nivel de satisfacao/conforto do consumidor a fim de minimizar o custo associado
ao consumo de energia elétrica bem como, minimizar a inconveniéncia
(insatisfacdo/desconforto) dos consumidores finais, garantindo a estabilidade e a
seguranca do EPS. Portanto, o HEMS através do controlador de gerenciamento de
energia (EMC) determina uma linha do tempo otimizada para cada aparelho por meio
do modelo de DR multiobjectivo validado através do uso das técnicas de otimizagao
Algoritmo Genético (GA), Otimizagdo por Enxame de Particulas (PSO), Linguagem
para Otimizador Geral Interativo (LINGO) e do Algoritmo Genético de Classificacao
por Nao Dominancia Il (NSGA-II), garantindo um cenario mais econdmico para os
consumidores finais. Os resultados mostram que o HEMS alcangou redugdes no custo
da eletricidade para todos os cenarios utilizados, afetando minimamente a
satisfacdo/conforto dos consumidores finais, bem como, levando em conta todas as

restricoes.

Palavras-Chave: Resposta a Demanda; Gerenciamento de Energia; Agendamento
de Carga; Otimizagao.
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Chapter 1

INTRODUCTION

This chapter first presents the issues that motivated this thesis, and then defines the
problem, gives a general view of the proposal, its objectives, justification, as well as the
main contributions and the organization of this work.

1.1 Context and Motivation

The growth of the global population has caused an increase in the complexity
of the electricity supply. Therefore, there is a need for studies and research concerning
the quality and reliability of electric power systems in order to prevent interruptions in
the supply of electricity and reduce price increases, among other problems
(ALTHAHER; MANCARELLA; MUTALE, 2015; DAl et al., 2017; LI et al., 2015; SOU
et al., 2011). At the same time, the pressure on natural resources worldwide and
concern for the environment is also increasing rapidly. One of the solutions to help
overcome such problems is to use a smart grid (SG). An SG is a system that applies
information and communication technologies (ICT) to improve the interaction among
all the devices of an electrical power system (EPS) and its consumers (ZHAO et al.,
2013). This interaction can be used by end consumers to improve their electricity

consumption pattern in order to reduce the cost of electricity.

The authors in (DENG et al., 2015; FANG et al.,, 2012) state that SG
represents a major change in the electric sector and it was conceived to improve the
generation, transmission, distribution and consumption of electricity. In the generation
process, SG is able to control failures and oscillations arising from the energy
production coming from renewable sources and to handle the decrease or
flexibilization of the use of thermoelectric and other non-renewable sources (IEC,
2010).

In the transmission of loads, SG is used in decision support systems, system
integrity, protection projects, asset management systems, and condition monitoring

devices, and for load distribution SG is involved in automation and distribution
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protection, distribution management systems and advanced metering infrastructure. In
the scope of the end consumers, the SG is used in the electric power management
system, in the distributed generation of electric power, in the intelligent homes and the
control system and building automation (IEC, 2010). Consequently, SG provides
significant improvements in the monitoring, management, automation, and quality of
electricity, which is offered through an electricity network characterized by the intensive

use of information and communication technologies (ICTs).

In (PARK et al., 2017), the authors affirm that the demand response control
methodologies and smart appliances can optimize the use of electrical resources more
efficiently. In this sense, the authors in (MURATORI; SCHUELKE-LEECH; RIZZONI,
2014; OZTURK et al., 2013a; PARVANIA; FOTUHI-FIRUZABAD, 2010) defined a
demand response (DR), from the point of view of a smart grid, as a program that
provides various incentives and benefits to end consumers to change their electricity
consumption patterns in response to changes in the price of electricity over time or
when electrical power network reliability is compromised by any EPS overhead.
Therefore, the excessive increase in electricity demand has made the use of a DR
program interesting for both consumers and the utility (PARVANIA; FOTUHI-
FIRUZABAD, 2010; SIANO, 2014).

The most commonly used DR programs (DRPs) are based on price,
following one of three tariff models: (1) Time-of-Use (TOU), which offers consumers
different electric energy tariffs during different periods of the day (SHAO et al., 2010;
WANG et al., 2013b) and is generally based on the average cost of generation and
delivery of energy over a 24-h period (FARIA; VALE, 2011); (2) Real-Time Pricing
(RTP), when the price of electricity is modified hourly throughout the day, and this may
reflect the cost for generation or the wholesale price level; and finally, (3) Critical-Peak
Pricing (CPP), which is a dynamic pricing mechanism that uses elements of TOU and
RTP to adjust tariffs as a temporary response to events or conditions such as high
market prices, or decreasing reserves (WANG et al., 2013b). The authors in (LIN; HU,
2018; ZHAO et al., 2013) affirm that RTP has much greater flexibility than TOU and
CPP. Therefore, the increase in the price of the tariff is linked to the increase in demand
for electricity or the low energy productivity of the EPS.

Thus, DRPs can be regarded as one of the most important tools for Home

Energy Management Systems (HEMS). DRPs are able to interrupt, control, regulate,
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or curtail the energy of the devices and end consumers have financial support to modify
their electricity consumption patterns in order to improve the reliability and efficiency of
EPS (HEMMATI; SABOORI, 2017). Moreover, DRPs help the utility companies to shift
the load from peak hours to off-peak hours in order to reduce electricity prices as well
as to balance the supply and demand (SHAKERI et al., 2018).

The authors in (SETLHAOLO; XIA; ZHANG, 2014) explained that DR has
been successful with commercial and industrial consumers due to the ability to
significantly reduce the cost associated with the consumption of electricity. However,
for the residential setting one of the obstacles to insert a DR program is the need for
manual intervention by the consumer in the process of determining the use of
residential appliances. Hence, due to a lack of time, and knowledge on the part of the
consumer as well as not wanting to participate actively in the programs related to EPS,

the implementation of DRs in the residential scenario is affected.

Therefore, the main motivation of this thesis is to develop a Home
Energy Management System (HEMS) that, through its operational core (EMC),
aims to program the use of residential appliances considering the real-time
pricing of electricity (RTP) as well as the different operating characteristics of
home appliances. The HEMS proposed in this work uses a mathematically formulated
DR optimization model as nonlinear programming (NLP) problem in order to
(re)schedule the loads to minimize the cost associated with the electricity consumption
and the inconvenience level (dissatisfaction/discomfort) of end consumers during the
use of the home appliances. Furthermore, the HEMS provides an efficient load
management process for balancing the energy supply and demand in order to

maximize the reliability and efficiency of EPS.
1.2 Definition of Problem

During the twenty-first century, the demand for electricity increased,
exposing various problems in the EPS such as: frailties in electricity distribution at peak
times, voltage fluctuations, interruptions in the energy supply and disordered increases
in the price of electricity (ALTHAHER; MANCARELLA; MUTALE, 2015; DAI et al.,
2017; LI et al., 2015; SOU et al., 2011). Thus, contemporary society, because of its
high level of dependence on electricity, began to demand a more reliable and safer
energy system (PIPATTANASOMPORN et al, 2012). Hence, the home load
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management process needs to be planned in a coordinated manner to ensure the
efficiency of the electric power system (EPS) and minimize the inconvenience level

simultaneously.

Owing to the relevance of DR applicability to the current scenario, which is
leading to a possible energy crisis, this issue has been analyzed as a viable alternative
in several recent studies (ALTHAHER; MANCARELLA; MUTALE, 2015; NAIR;
RAJASEKHAR, 2014; OZTURK et al., 2013b; SAFDARIAN; FOTUHI-FIRUZABAD;
LEHTONEN, 2014; VIVEKANANTHAN; MISHRA; LI, 2015; WANG,; PARANJAPE,
2017b; XING YAN et al.,, 2015; ZHAO et al., 2013), discussing and proposing

improvements related to the process of load management in smart grids.

In this context, this thesis proposes a home energy management system
(HEMS) using a multi-objective DR optimization model mathematically formulated as
nonlinear programming (NLP) problem to determine optimal programming of the
appliances, considering real-time pricing (RTP) and the different categories of home
appliances. This DR multi-objective optimization model aims to minimize the cost
related to the electricity consumption and the inconvenience for the end
consumers subjected to a set of restrictions, such as minimum and maximum
load limits for each time interval; ramp limits; minimum consumption related to
the time horizon; and operational constraints for the different home appliance

categories.

Meanwhile, although the optimization problem is formulated as a nonlinear
programming problem, which is difficult to solve in generic terms, different methods
using Genetic Algorithm (GA) (LINDEN, 2012; LUCENA, 2013; REY NARINO, 2014),
LINGO (LINDO SYSTEMS INC., 2016), Particle Swarm Optimization (PSO)
(EBERHART; KENNEDY, 1995) and Non-Dominated Sorted Genetic Algorithm
(NSGA-II) (DEB et al., 2002) were applied to obtain the optimal solution in mono and

multi-objective scenarios, respectively.
1.3 Objectives

The main objective of this work is to develop a home energy management
system and a multi-objective DR optimization model to manage the use of residential
appliances in order to minimize the cost associated to the electricity consumption and

the inconvenience level of the consumers about the operational programming of
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domestic appliances. Thus, it intends to schedule the use of home appliances
considering the changes that occur in the real time pricing of electricity, the restrictions
associated with energy consumption (minimum and maximum load limits for each time
interval; ramp limits; minimum consumption related to the time horizon) and constraints

related to operational aspects for the home appliance categories.

To achieve this general objective, the following specific objectives have

been defined:

— To conduct studies on household electricity consumption management,
highlighting the aspects related to minimization of electricity cost and inconvenience
for consumers on the use of home appliances;

— To develop a DR optimization model to define the optimal programming
of residential appliances;

— To apply optimization techniques to solve the DR problem that involves
the management of the appliances;

— To analyze the performance of optimization techniques and the impact of
different energy consumption profiles concerning the minimization of the cost related
to the consumption of electric energy and the inconvenience level of end consumers;

— To evaluate the performance of the results obtained in the computational

simulations using statistical metrics in the multi-objective scenario.
1.4 Proposal Overview

This work proposes a home energy management system (HEMS) that aims
to program the use of each appliance considering the price of electricity in real time,
the operating characteristics of each appliance and the level of satisfaction/comfort of
the consumer. Thus, when HEMS is installed in residences, it is intended to minimize
the cost related to the electricity consumption with the least possible interference to
the satisfaction/comfort of the end consumers and to guarantee the stability and

efficiency of the electric power system.

The HEMS developed in this thesis consists basically in 03 main
components: Advanced Measurement Infrastructure (AMI), Smart Meters (SM) and
Energy Management Controller (EMC). All the procedures performed, for example,
turn on/off home appliance loads, are supported by a data network, such as ZigBee
(IEEE 802.15.4) (RAMYA; SHANMUGARAJ; PRABAKARAN, 2011), which conveys
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information of the home appliance operations to the EMC, using it to determine the
system status and rehearse the commands to be performed.

Advanced Measurement Infrastructure enables bi-directional
communication between SMs and the utility, allowing real-time data sharing of
electricity consumption and pricing. The SM is a communication interface installed
between AMI and EMC to collect data related to the energy consumption of each home
appliance using, for example, technology ZigBee, Z-wave or Bluetooth, and it receives
real-time information about the electricity price from the utility. The EMC (HEMS
operating core) is fully responsible for the usage management of the existing devices

on the home network.

Under these circumstances, the EMC, using the DR optimization model
presented in this thesis, can plan the use of each home appliance minimizing the cost
related to energy consumption and the inconvenience level of consumers through the
scheduling of the load usage pattern, based on the price of electricity and provide a

priori in order to guarantee the stability and safety of the EPS.
1.5 Thesis Statement

This thesis proposes a HEMS that is able to plan the operation of the
residential appliances considering the data obtained on energy consumption of each
appliance, the real-time pricing of electricity and end consumer usage preferences.
The HEMS controls and managements the home appliances more accessible in order
to reduce the cost related to electricity consumption and the inconvenience level
caused by the use of the appliances, and it results in a lower peak-to-average ratio
(PAR), which contributes to improving the reliability of the EPS operation. Specifically,
the thesis statement is:

Due to the costs and restrictions related to energy, HEMS is of great
importance nowadays because it is becoming essential for modern societies, cities,
and smart homes (ARAUJO et al., 2018; SILVA; KHAN; HAN, 2018). HEMS manage
home energy consumption in order to increase the stability and efficiency of the EPS

using the optimization algorithms.

Thus, different techniques are being studied to improve residential energy
usage. The main technique to improve energy usage is by adjusting the planning of

residential appliances to maximize consumption. Such adjustments allow a reduction
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in the final amount of energy required and, by operating the appliances in periods when
the cost of electricity is lower, reduce the final costs even further; moreover, the use of
appliances in off-peak hours with cheaper rates reduces the demand during peak-
hours (HEMMATI; SABOORI, 2017; SHAKERI et al., 2018).

End consumers have home appliances (FANG et al., 2012; GAO et al.,
2012; VARDAKAS; ZORBA; VERIKOUKIS, 2015) that need to be programmed in an
orderly manner to guarantee a balance between supply and demand of electric energy
(FANG et al., 2012; PIPATTANASOMPORN et al., 2012; VARDAKAS,; ZORBA,
VERIKOUKIS, 2015). However, the programming of these home appliances within the
same time interval requires specific knowledge and availability of time on the part of
the consumer (RASTEGAR; FOTUHI-FIRUZABAD, 2015). Also, residential
management scheduling must grant consumer preferences regarding the usage of

these appliances and the price variation of electricity.

To support this thesis statement, the following research approach was
adopted:

Considering the importance of load scheduling in the residential area, the
different categories of residential appliances and consumer preferences were carefully
investigated. Through these studies, the achievements in this area were identified, as
well their limitations and open issues. An analysis of the solutions for the optimized
scheduling of residential appliances was conducted to evaluate the efficiency of
HEMS, that uses the DR optimization model in its operational core (EMC) in scenarios
and it involves the cost minimization associated with the consumption of electric energy
as well as minimizing the level of inconvenience (dissatisfaction / discomfort) of end

consumers.

Thus, several experiments have been implemented in order to verify the
performance of HEMS using a multi-objective DR optimization model mathematically
formulated as nonlinear programming (NLP) problem to determine optimal
programming of the appliances, considering real-time pricing (RTP) and the different
categories of home appliances. This DR multi-objective optimization model aims to
minimize the cost related to the electricity consumption and the inconvenience for the
end consumers subjected to a set of restrictions, such as minimum and maximum load
limits for each time interval; ramp limits; minimum consumption related to the time

horizon; and operational constraints for the different home appliance categories.
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1.7 Work Organization

This thesis has 05 Chapters, after this introduction; they are the following:

Chapter 2 presents the theoretical foundation, which details the concepts of
a smart grid, demand response, mono-objective and multi-objective optimization
problems, optimization techniques (Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), Language for Interactive General Optimizer (LINGO) and Non-
dominated Sorting Genetic Algorithm Il (NSGA-II)) and gives the scientific productions
developed in the literature, assuming DR tariff models (TOU, RTP, and CPP) to

perform the classification of the papers studied in the course of this work.

On the other hand, in Chapter 3 explains the Home Energy Management
System (HEMS) describing its main components, detailing the proposed DR
optimization model to manage the load scheduling in residential environments. Thus,
the various restrictions associated with energy consumption are explained here, such
as the minimum and maximum limits of the load for each time interval; ramp limits;
minimum consumption related to the time horizon; and operational restrictions of the

home appliance categories.

Besides, in chapter 4 discusses the performance evaluation and analysis of
the results obtained through computational simulations using LINGO, GA, PSO and
NSGA-II metaheuristics in mono-objective and multi-objective contexts, respectively.
Moreover, the statistical metrics that were used to evaluate HEMS operation before
the load scheduling process through NSGA-II using the DR multi-objective optimization
model are also presented. Furthermore, other test scenarios and a comparative
analysis of the achieved results for different energy consumption profiles and different

categories of residential appliances were discussed.

Finally, Chapter 5 gives the conclusions of the thesis, with emphasis on the

main contributions, the results achieved and the perspectives for future works.



Chapter 2

THEORETICAL FOUNDATION

This Chapter describes the theoretical basis, which introduces relevant concepts about
smart grids, demand response, mono-objective and multi-objective optimization problems,
optimization techniques (Genetic Algorithm (GA), Particle Swarm Optimization (PSO),
LINGO and the Non-Dominated Sorting Genetic Algorithm Il (NSGA-II)). It also presents
the scientific proposals related to the Home Electricity Consumption Management in the
Smart Grids according to the type of tariff model: Time-Of-Use, Real-Time Pricing and
Critical- Peak Pricing.

2.1 Smart Grid (SG)

During the twenty-first century, the electricity demand increased
significantly, and this brought various practical problems, such as difficulties to attend
peak power demands, with voltage fluctuations and outages. Nowadays, as
contemporary society is highly dependent on electricity, there is a strong need for an
energy system that is as reliable and secure as possible (PIPATTANASOMPORN et
al., 2012).

Thus, a new paradigm for the electric power system (EPS), called a smart
grid (SG), has emerged. The SGs infrastructure is composed of energy, information,
and communication architecture and provides to consumers the possibility of
producing their electricity (through photovoltaic panels, for example) and send back to
the grid the energy that was not consumed during the day, enabling a two-way energy
network. Meanwhile, the traditional electric power system (EPS) operates
unidirectionally, in other words, the electric power is transported by the transmission
system and distribution from the generation plants to the consumers in a single
direction (BHAROTHU; SRIDHAR; RAO, 2014).

Figure 1 represents a traditional electric power system, which mainly utilizes
hydroelectric plants as electricity generators. They produce 19.710,4 TWh of the
energy consumed in the world (EMPRESA DE PESQUISA ENERGETICA (EPE) /
MINISTERIO DAS MINAS E ENERGIA (MME), 2015), that is transmitted/distributed
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unidirectionally to end consumers, considering that most homes, buildings, and
industries still do not produce their electricity and that few utilities are prepared for a

two-way smart grid system.
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Figure 1 — Traditional Electric Power System.

The SG enables the improvement, reliability, and efficiency of generation,
transmission, distribution and consumption of electric energy (FANG et al., 2012). One
of the benefits of an SG is the intensive use of information and communication
technologies (ICT) that allows a greater automation of the electric power system. In
addition, another benefit SGs is greater use of alternative sources of electricity, which
have a lower environmental impact than the more traditional forms of energy

generation, such as the sources derived from fossil fuels.

In power transmission and distribution systems, it is possible to use
technologies that can, for example, monitor and control the magnitude of voltage in
real time, in order to meet the electric energy demands of the end consumers (IEC,
2010). Regarding consumption, the use of bidirectional communication technologies
between the concessionaire and the consumers can be applied to carry out various
tasks remotely, such as measuring electricity consumption or interrupting the supply of

electricity to consumers with outstanding debts (FAN et al., 2013).

A Smart Grid seeks the integration of power systems and ICTs (IEEE STD
2030-2011, 2011) so that it can detect and analyze faults; notify consumers and
network administrators; restore itself automatically and quickly; resist physical and
cyber-attacks; meet the energy consumption profile of end consumers; provide quality
energy and consistent with consumer needs; support the inclusion of a variety of
resources, such as renewable energy production and demand response programs;
and be accepted in competitive markets for electric power supply (FANG et al., 2012;
GAO et al., 2012; SINHA et al., 2011; VARDAKAS; ZORBA; VERIKOUKIS, 2015).
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2.1.1 Smart Grid Architecture

A smart grid has a variety of mechanisms that are able to improve the
operational stages of generation, transmission, distribution, and consumption. Among
the mechanisms available, about the process of electric power generation, it can
overcome the failures and the oscillations resulting from the energy production coming
from renewable sources, by adjusting the use of the thermoelectric and hydroelectric
plants (IEC, 2010).

In the transmission and distribution processes, SGs are used in the energy
management systems; in decision support systems; in system integrity protection
projects; in power electronics; in asset management and monitoring device systems;
in automation and protection of distribution; in the management of distribution systems
and Advanced metering infrastructure (AMI). Moreover, for the end-users, the SGs
take part in smart consumption; local production; intelligent homes and building
automation and overall control systems (IEC, 2010).

The communication system is a key component of the infrastructure of
smart grids. This system integrates applications and computing technologies and
makes the architecture of the grid capable of obtaining data from various appliances
for further analysis, control and methods of charging in real-time (GUNGOR et al.,
2011). Therefore, the electric utilities must redefine their communication requirements

in order to find the best infrastructure to handle this transfer of information.

Smart Grids have two forms of communication and networking for the flow
of information: (a) the information collected from sensors, appliances or other
equipment is sent to a smart meter, which calculates and provides the immediate need
for electricity and then this information is sent to the global operating sector, allowing
control of interconnected devices or equipment, and (b) information from a smart meter
is sent to the SG infrastructure to control and adjust the generation, transmission and
distribution of real-time energy (CHEN et al., 2010).

The authors in (GAO et al., 2012) claim that the Smart Grid incorporates
information communication technologies into the grid. The SG participates throughout
the current electrical grid system, from generation to transmission, and on to
distribution (Figure 2). However, all these need to have an effective data

communication networking system.
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A Smart Grid has Home Area Networks (HANs), Building Area Networks
(BANSs), Industrial Area Networks (IANs), Neighborhood Area Network (NAN), Field
Area Network (FAN), and a Wide Area Network (WAN). HAN is a communication
network for domestic appliances and devices; NAN and FAN are a network of multiple
HANs that sends the metering data to data concentrators and control data to HANSs;
WAN is the largest network for communications to/from data centers. All the smart
appliances in a HAN can be connected to smart meters. Smart appliances like smart
dishwashers, dryers, ovens, etc.; have communications and remote control functions,

and their smart meters are connected to a metering gateway.

In a NAN, the metering gateways of home areas can be connected to form
a wireless mesh network. On the other hand, a WAN connects smart metering
gateways with the utility and the distribution control system. However, there are many
challenges to set up a practical Smart Grid Communication Infrastructure including

interoperability and scalability with many different utility companies and user facilities
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as well as the need to incorporate new technology such as Smart Meter Infrastructure
(GAO et al., 2012).

2.2 Demand Response (DR)

The authors in (ROH; LEE, 2016) point out that many countries want to
develop a smart grid to be able to utilize their energy resources efficiently using the
electricity grid. Thus, an ordinary grid becomes smart by combining the electricity grid
with a communication network, and real-time two-way communications are set up
between grid and customer. However, there are still many challenges to overcome on
setting up a smart grid, and demand response (DR) (or electricity load scheduling)
plays a key role in order to run the smart grid efficiently and reliably (MEDINA,
MULLER; ROYTELMAN, 2010).

DR is considered by the authors in (ALIPOUR; ZARE; ABAPOUR, 2017;
MOON; LEE, 2016) to be a program that encourages the end consumers (residential,
industrial and commercial) to change their energy consumption habits, based on price
variations or incentive cash payments offered by utilities. These incentives produce
reasonable prices as well as providing reliability to the system during peak periods.
This makes DR interesting for the consumers and utility, especially when there is a
high demand (PARVANIA; FOTUHI-FIRUZABAD, 2010; SIANO, 2014). Customers
can schedule their energy consumption and the operations of their appliances with DR
in order to reduce their electric bill and/or improve their satisfaction due to different
electricity prices, and consequently their demand and preference profiles (ROH; LEE,
2016).

Demand response is classified into two programs, as shown in Figure 3,
based on price and incentive (PARVANIA; FOTUHI-FIRUZABAD, 2010;
PIPATTANASOMPORN et al., 2012). The first is associated with changes in electricity
consumption triggered by changes in the purchase price of electricity throughout the
day. The second offer incentives (such as credits, discounts on the energy bill or cash)
to consumers in order to reduce electricity consumption during the peak times
(VARDAKAS; ZORBA; VERIKOUKIS, 2015). Both programs are described below.

2.2.1 Classification of DR Programs (DRPs)

The Incentive-Based Programs (IBP) are divided into Direct Load Control

(DLC), Interruptible/Curtailable Services (ICS), Emergency Demand Response
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Program (EDRP), Capacity Market (CM), Demand Bidding/Buyback (DBB) and
Ancillary Services Market (ASM). In Price-Based Programs (PBP), the tariff models
can be Time-of-Use (TOU), Real-Time Pricing (RTP) or Critical-Peak Pricing (CPP)
(AGHAEI; ALIZADEH, 2013; FARIA; VALE, 2011; NAIR; RAJASEKHAR, 2014).

Direct Load
Control (DLC)

Interruptible/
Curtailable Load

Demand Bidding/
Buyback

— Incentive-Based |—

Capacity Market
Programs

— Emergency DR

Ancillary Services
Market (ASM)

DR PROGRAMS

Figure 3 — Demand Response Programs.

2.2.1.1 Incentive-Based Programs (IBP)

This program offers incentives such as credits and discounts on energy bills
or cash payments to consumers in order to reduce their energy consumption during
peak periods. However, all the applications and responses of consumers to this
program are voluntary; moreover, some of the existing programs penalize participants
for their failure to comply with contractual clauses, such as the non-reduction of
electricity consumption at a pre-determined time (VARDAKAS; ZORBA; VERIKOUKIS,
2015).

a) Direct Load Control (DLC):

Direct Load Control allows the program operator, manager responsible for
the control of the energy system, to remotely access the shutdown or cycle of electrical
equipment of consumers such as air conditioners or water heaters (FARIA; VALE,
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2011; SIANO, 2014; ZHANG et al., 2017). However, the authors in (CHEN; WANG,;
KISHORE, 2014) claim that the DLC programs have several limitations, such as:

I. They are only for emergencies since they do not analyze the operational

flexibility of the equipment sufficiently to balance supply and demand;

Il. The centralized control structure of these programs lack computing and

communication requirements when a large number of clients are considered;

lll. DLC programs lack effective control of customer privacy, due to the
exposure of their energy consumption profiles every time equipment is remotely

controlled.
b) Interruptible/Curtailable Service (ICS):

This program aims to reduce energy consumption by providing incentives
in the form of credit or discounts on the energy bill. However, it is necessary for the
consumer to be enrolled in the program so that they can take advantage of the benefits
or suffer the penalties if they do not comply with the contractual clauses (FARIA; VALE,
2011; SHARIATZADEH; MANDAL; SRIVASTAVA, 2015; SIANO, 2014).

c) Emergency Demand Response Program (EDRP):

Emergency Demand Response Program is seen as a combination of the
DLC and ICS programs but with the particularity of providing payments, such as
discounts or credits on the energy bill, to consumers who achieve a satisfactory
reduction in electrical loads during the periods when energy reserves are insufficient
(FARIA; VALE, 2011; SIANO, 2014).

d) Capacity Market (CM):

Capacity Market allows consumers to pledge a reduction of electricity usage
in a pre-determined manner, but they are prone to penalties if they do not reduce their
consumption when prompted. Therefore, this program can be seen as a safe
investment in the short and long terms, because the consumers reduce their energy
consumption on request and, in return, they receive financial incentives (loans,
discount rates on their energy bills or cash payments) (AALAMI; MOGHADDAM;
YOUSEFI, 2010).
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e) Demand Bidding/Buyback (DBB):

This program aims to encourage consumers, particularly industrial
consumers, to reschedule their energy consumption and also to reduce consumption
at peak times, in return, the utility offers financial rewards such as discounts on the
energy bill. Also, consumers who have alternative sources of power generation are
encouraged to sell the energy that was not used to the utility (SAEBI, J.; JAVIDI, 2012).

f) Ancillary Services Market (ASM):

The authors in (FARIA; VALE, 2011) claim that the ASM programs are
similar to DBB, but when the ASM consumers reduce their electricity consumption they
receive payments from the network operator, due to their support for the grid

operations, that is as an auxiliary service (SIANO, 2014).
2.2.1.2 Price-Based Programs (PBP)

This program is linked to the changes in energy consumption in response
to the existing variations in the price of electricity throughout the day. Here, the price-
based program encourages consumers to change their energy consumption habits by
following the changes in electricity prices. Consequently, consumers will decrease the
use of electricity when prices are high and, as a result, there will be a reduced demand
at peak times (DENG et al., 2015; VARDAKAS; ZORBA; VERIKOUKIS, 2015).

a) Time-of-Use (TOU):

The TOU pricing is offered by utilities to customers. TOU offers different
rates for different periods of the day (SHAO et al., 2010; WANG et al., 2013b);
consequently, consumers modify their electricity use profile. This DR program is mainly
aimed at residential users (LUJANO-ROJAS et al., 2012). Usually, it reflects the
average cost of generation and delivery of power over different periods (FARIA; VALE,
2011).

The authors in (GYAMFI; KRUMDIECK; URMEE, 2013) allege that the
programs which investigate the impact of tariffs on electricity demand typically use the
TOU model. Figure 4 presents a TOU pricing example in which the usual price of a
kWh is US$ 0.50 but in the peak period between 11h00 and 14h00 this rate increases
by approximately 60% to US$ 0.80 a kWh. Thus, TOU pricing confirms that a kWh of

electricity at peak times costs much more than at other times.
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Figure 4 — TOU Price Structure.

TOU pricing programs allow the use of a price structure that considers
periods with pre-established rates. However, the TOU can also be used in a dynamic
pricing structure where there is a relationship between the real-time demand and the
energy supply, harmonizing the balance of the use of energy and reducing the costs
for the end consumers (XING YAN et al., 2015).

b) Real-Time Pricing (RTP):

Greater participation by the consumers is extremely important in the RTP
structure (VARDAKAS,; ZORBA; VERIKOUKIS, 2015) because, in RTP, the price
changes on an hourly basis and consumers are usually informed about the RTP price
only hours or days in advance (WANG et al., 2013Db).

Figure 5 shows an RTP model in which the price of electricity varies hourly
and the period with the highest tariff is between 19h00 and 20h00 and lowest price is
between 00h00 and 1h00 a.m. However, the authors in (VARDAKAS; ZORBA,
VERIKOUKIS, 2015) stated that the use of two-way communication technology is
necessary to fully develop the RTP structure in SGs, as there must be a direct link in
real-time between the utility and the consumer. Therefore, an Energy Management
Controller (EMC) capable of supporting the continuous flow of data and consumer
preferences is installed in the consumer environment, enabling significant
improvements in the decision-making process about consumption and as a result, a

reduction of costs.
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Figure 5 — RTP Price Structure.

Utilities also have a decision-making feature, which contemplates random
events such as the total energy consumption and the consumer response compared
to previous prices, allowing the new prices to be fixed for the next consumption period.
The RTP program has already been successfully applied to various consumers in the
industrial and commercial fields but has gained little success in residential areas,
because most residential consumers consider the need to make periodic decisions
about their electricity consumption a disadvantage (VARDAKAS; ZORBA,
VERIKOUKIS, 2015).

Due to the technical limitations existing about demand, the implementation
of real-time charging is still considered a challenging problem. However, it is very
advantageous for owners of electric vehicles, which are usually recharged at night,
when the tariffs are usually lower (XING YAN et al., 2015).

c) Critical-Peak Pricing (CPP):

CPP is a hybrid-pricing model made up of TOU and RTP tariffs. According
to the authors of (DENG et al., 2015; WANG et al., 2013b), the base structure for the
CPP rate is TOU. However, the CPP uses the RTP charging structure when the electric
system is facing risks, such as an energy demand greater than the supply, which
affects reliability. Thus, the peak hour tariff is increased in order to reduce the energy
demand. So, the increase in the tariff is linked to an increase in demand or low

productivity of the system.
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The example of the CPP in Figure 6 shows that the tariff structure is similar
to TOU and the price, in kWh, is US$ 0.50 for most of the day. However, there were 2
critical events on that day: the first was between 11h00 and 12h00, when the tariff was
adjusted to US$ 0.90 equivalent to an approximate increase of 80% compared to the
value of the usual rate of US$ 0.50; and, the second critical event was between 18h00
and 19h00 when the tariff increased to US$ 0.80, representing an increase of
approximately 60% over the normal off-peak hour tariff of US$ 0.50.
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Figure 6 — CPP Price Structure.

Considering the above, CPP is used only for a limited number of hours or
days per year, to ensure the reliability of the system or to balance demand and supply
(VARDAKAS; ZORBA; VERIKOUKIS, 2015).

2.2.2 Demand Response Program Participants

The demand response program aims to balance the relationship between
supply and demand of electricity. According to (SIANO, 2014), when consumers
participate in the DR, there are various possibilities for them to change their energy
consumption, such as: reduce their energy consumption through load reduction
strategies and moving the energy consumption to non-peak periods. However, it is
fundamentally important to know the consumer behaviour profile in order to establish
answers to the changes in electricity prices over the periods and the threats related to
system reliability (VARDAKAS; ZORBA; VERIKOUKIS, 2015).

The contribution and collaboration between the participants that make up

the DR are of fundamental importance.
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Figure 7 illustrates the four major players in the DR program: 1. The
consumers who may be residential, commercial or industrial; 2. The DR Aggregator
running the DR program that is inter-connected to the consumers; 3. The Distribution
System Operator (DSO) that controls the distribution network; and 4. The Independent
System Operator (ISO) or Regional Transmission Operator (RTO) that starts the
operation of the DR program (VARDAKAS; ZORBA; VERIKOUKIS, 2015).

1

= Energy flows
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Figure 7 — Participants of DR Programs.
(VARDAKAS; ZORBA; VERIKOUKIS, 2015)

Figure 7 shows the participants of the DR program. The RTO/ISO starts the
operation of the DR program, and then determines the required demand and
consumption time period; information which is sent to the DR Aggregator. The DR
Aggregator, in turn, chooses the consumer participants depending on their availability
and their ability to the DR program proposal. Then, the DR Aggregator calculates the
total demand and sends the data to the RTO/ISO. However, in order to avoid any
possible problems occurring in the distribution system, the DR Aggregator notifies the
total DR to the Distribution System Operator (DSO) that informs the substations with
the most energy available about the total energy demand (VARDAKAS; ZORBA;
VERIKOUKIS, 2015).

2.2.3 Benefits of Demand Response

According to O'Connell et al., (2014), the inclusion of ICT and the increased
ability to forecast power needs and control in electric power systems, makes DR a
viable and appropriate option to improve load flexibility. Demand response allows a
more efficient use of system resources, and as a result, DR may bring different benefits
that are not just limited to reducing the operating costs of the system but have the
possibility of including renewable energy sources, an increase in economic efficiency

through the implementation of real-time prices, and finally reductions in generation
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capacity requirements, as well as transmission and distribution network congestion
management. Bradley, Leach and Torriti (2013) also presented various important

potential benefits of DR:

1. Relative and absolute reductions in electricity demand that are related to
increased cost savings for consumers by economizing electricity and decreasing COz2

emissions;

2. Short run marginal cost savings by using DR to shift peak demand and to
modify consumer usage patterns of electricity and consequently reduce the cost of

electricity per kWh;

3. Ability to relocate new investments by using DR to shift peak demand, so

that peak time loads are lower than they would be without the use of demand response;

4. DR can be used to provide reserves for emergencies/unforeseen events,
especially in the short term, to allow the energy system to reduce electrical demand in

an emergency;

5. DR is able to achieve a balance between supply and demand in a

distributed electrical power system using renewable and non-renewable sources;

6. To reduce transmission network investments by reducing congestion of

the network and avoiding transmission network re-enforcement;

7. Moreover, finally, DR can be applied to improve distribution network

investment efficiency and reduce losses.

According to Siano (2014), DR can offer many benefits related to the
operation and expansion of the system and marketing efficiency depending on the
purpose, design, and implementation, as well as other factors such as the technology
used and the system structure. Thus, the benefits of DR can be classified, considering
the participants involved in general or only some members or all groups of electricity

consumers, as follows:

1. Savings in electricity bills: the participants receive payments for modifying

their energy consumption;

2. Reliability: consumers who are active participation in the electrical

system, such as those that generate electricity through renewable sources and
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concede any non-consumed energy to the power utility, help avoid deficits in the

electrical system;

3. Market performance: DR prevents a monopoly of the market by the
electric utilities as various sectors (industrial, commercial, residential) become active

in the generation and sale of electricity;

4. Improvement of choice: consumers have more choices regarding the

management of the tariffs;

5. System Security: the electrical system operators are given more flexibility,
and for example, are able to interrupt or switch loads remotely in order to overcome

any contingencies.

Thus, DR, from the point of view of smart grids is an effective means of
rescheduling consumer energy consumption and enabling the whole system to
become more reliable and transparent regarding expenses laid out in the electricity bill;
moreover, DR allows the utilities to offer an electricity market suitable for end-users.
Consequently, there are financial benefits for the power utility and the consumers, and
last but not least, DR helps reduce impacts on the environment with the inclusion of
alternative sources of electricity generation as well as making more efficient use of the
grid capacity (DENG et al., 2015).

2.2.4 Barriers to Demand Response

The elements that can prevent or restrict DR operations are called barriers.
These barriers can be processes, people, policies, organizations or any other aspect
of the electric power industry (HODGSON; THOMSON; CLIFFORD, 2011) However,
the origin of these barriers is linked to socio-economic, technical-economic situations
or policies, which can be identified as: Technological, Regulatory and Economic
(HODGSON; THOMSON; CLIFFORD, 2011; THE BRATTLE GROUP; FREEMAN
SULLIVAN & CO; GLOBAL ENERGY PARTNERS, 2009).

a) Technological Barrier:

Technological barriers involve the following: Lack of Advanced Metering
Infrastructure (AMI); Lack of Cost-Effective Enabling Technologies; Concerns about
Technological Obsolescence and Cost Recovery; and Lack of Interoperability and
Open Standards (HODGSON; THOMSON; CLIFFORD, 2011; THE BRATTLE
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GROUP; FREEMAN SULLIVAN & CO; GLOBAL ENERGY PARTNERS, 2009).
However, Lack of Advanced Metering Infrastructure causes a serious problem on
setting up a DR program based on price, as there will be no capacity to measure the

data and therefore the DR program will not be able to offer consumers dynamic pricing.

A Lack of Cost-Effective Enabling Technologies affects the participation of
consumers in DR programs because technologies, such as smart thermostats that
respond to high prices through an automatic adjustment in their settings aimed at
energy savings, are not yet profitable for the electric utility. The concerns about the
Technological Obsolescence and Cost Recovery involve doubts about the ability to
recover the cost of these investments before these technologies need to be replaced.
Finally, the Lack of Interoperability and Open Standards can harm the process of
communication between devices, such as thermostats and smart meters, among
others that are part of the demand response program (THE BRATTLE GROUP;
FREEMAN SULLIVAN & CO; GLOBAL ENERGY PARTNERS, 2009).

b) Regulatory Barrier:

This barrier occurs when there is no legislation concerning the rights and
obligations of the participants in the DR program. Therefore, the regulatory barrier is
considered a serious problem for DR (HODGSON; THOMSON; CLIFFORD, 2011).
The authors in (THE BRATTLE GROUP; FREEMAN SULLIVAN & CO; GLOBAL
ENERGY PARTNERS, 2009) claim that the lack of a standard regulating the price of
electricity affects the dynamic pricing being developed by the power utility for the
consumers, because most of the tariffs currently offered do not reflect the dynamics of
time (for example - every hour of the day) in the cost of supply. Thus, consumers are
not provided with adequate prices and as a result, fail to carry out efficient energy

consumption, causing them to consume more energy during peak periods.
c) Economic Barrier:

According to the authors in (THE BRATTLE GROUP; FREEMAN
SULLIVAN & CO; GLOBAL ENERGY PARTNERS, 2009), the economic barrier is
associated with two central obstacles. First: Inaccurate Price Signals, tariffed prices for
the supply of electric energy do not accurately reflect the real value, and therefore may
cause a reduction in demand when the cost of electricity is low or an increase in power

consumption when the tariff is high, hindering the economic efficiency of the energy
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market. The second obstacle is the Lack of Sufficient Financial Incentives to Induce
Participation that can lead to low participation of consumers in DR programs. However,
existing higher financial incentives have increased the presence of consumers in DR

programs.

Nair and Rajasekhar (2014) claim that one of the main obstacles to the
inclusion of consumers in DR programs is the lack of a manual explaining the
operational processes. Therefore, along with that latter reason, the lack of time, lack
of knowledge and lack of interest by the consumer to actively participate in DR
programs connected to the electric power system means that the DR programs are not
growing as expected. Based on such data, various scientific works are being
developed to seek a satisfactory outcome for DR about managing loads effectively,
through the implementation of multiple "smart" devices capable of performing the

automatic intervention in the management of electricity process for the consumer.
2.3 Optimization

According to Rey Narifio (2014), optimization problems aim to minimize or
maximize a certain objective function, subjected or not to constraints of equality and
inequality, thus achieving better use of available resources. Therefore, globally, Rey
Narifio (2014) defines optimization as a research process for the best use of resources

within a category of possible solutions from the project variables.
2.3.1 Mono-Objective Optimization

The mono-objective optimization aims to obtain values that involve
minimizing or maximizing a single objective and scalar function (BARBOSA, 2012).
Thus, when SG involves DR, one of the main purposes is to find solutions that allow
the end consumer to minimize the cost associated with the electricity consumption and
the level of dissatisfaction/discomfort in relation to the optimized programming of the
use of the home appliances. On the other hand, one of the objectives of the electric

utility is to maximize the profit, efficiency, and safety of the electric power system.
2.3.1.1 Mono-Objective Problem Formulation

The mathematical formulation of a mono-objective optimization problem is
usually designed as (BAZARAA,; SHERALI; SHETTY, 2006; MOUSSOUNI-MESSAD,
2009):
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optimize f(x) (1)
subject to
gix)<0,i=1,..,1 (2)
hi(x)=0,i=1,..,m (3)
x€X (4)

In this formulation f, g, ..., g1, hi, ..., hy, @re functions defined on R™, X is a
subset of R™, and x is the vector of the problem variables x4, x,, ..., x,, f(x) is the
objective function to be minimized (or maximized), g;(x) < 0,i =1,...,1 and h;(x) =
0,i=1,..,m are the set of inequality and equality constraints of the problem

respectively.
2.3.2 Multi-Objective Optimization

Many real-world problems come with a set of goals to be optimized that are
often conflicting with each other, in other words, it is impossible to improve a goal
without harming another. These problems are known as multi-objective or multi-
criterion and are distinguished from classical mono-objective optimization problems in
the way of solving them. Because they are conflicting objectives, each objective in a
multi-objective optimization each objective corresponds to an optimal solution and the

problems are presented as a set of optimal solutions (AMORIM, 2006).

According to Pavelski (2015), a Multi-Objective Optimization Problem
(MOP) is mathematically formulated such as a) vector of decision variables that satisfy
a set of constraints and; b) vector of objective functions to be optimized. The objective
functions are usually in conflict with each other, so optimizing means finding solutions
with acceptable values according to what is established for each objective. A more
generic way to solve a MOP is to find a set of good solutions, supporting the tradeoff
between the objectives. Then, it is up to the decision maker to provide a set of the best
solutions using higher-level information and the power of choice, such as experience
in a given situation. Hereupon, the search for efficient non-dominated solutions is

independent of the problem.
2.3.2.1 Multi-Objective Problem Formulation

A multi-objective optimization problem (MOP) can be described as follows
(AZUMA, 2011; TRIVEDI et al., 2017):



27

optimize f(x) = (fi(x), f2(0), ..., fi(x))"
)

subject to
gix)<0,i=1,..,L (6)
hi(x)=0,j=1,..,.M (7)
ex {xi(inf) <x < xi(sup) )
x €Q

where Q1 is the search space and x is the decision variable vector, representing the
problem solution f: O — R’, where i is the number of objective functions, and R is the
objective space and L and M are the number of inequality and equality constraints,
respectively. Inequalities (g;) and equalities (h;) are known as constraint functions and
(inf)

i

the values x""” and x*"" indicate the inferior and superior limits of the variable x;.
Therefore, these limits define the space of the variables and the set of all the possible
solutions form the feasible region or search space (Q2). The vector of the objective
function f(x) = (fi(x), f,(x), ..., f;(x))T belongs to the objective space. Thus, for each
solution of x in the decision space, there is a point f(x) in the space of the objectives

(AZUMA, 2011; TRIVEDI et al., 2017).

Aquino (2015) affirms that, in a multi-objective optimization, the concept of
optimality is based on the definition of Pareto dominance to compare two feasible
solutions to the problem introduced by Edgeworth in 1881 and, then, generalized by
Vilfredo Pareto in 1896. Considering a minimization of all the objectives and given two
solutions x and vy, it is said that x dominates y (represented as x < y) if the following
conditions are satisfacted (AQUINO, 2015; AZUMA, 2011; TRIVEDI et al., 2017):

- The solution x is better than or equal to y in all the objective functions, in
other words f;(x) < fi(y) V; € {1, ...,i}, where m is the number of objective functions;
- The solution x is strictly better than y in at least one objective function,

that is, fi(x) < fi(y) for at least one value of i.

A solution that is not dominated by any solution of the space Q is called
Pareto-optimal, and its set is called the Pareto-Optimal Set. The respective points in
the objective space determine a border called the Pareto-Optimal Frontier (AQUINO,
2015).
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(AZUMA, 2011) displays in Figure 8 an example that illustrates the concept
of dominance between the points of an objective minimization problem. In this picture,
B < A. Notice that A and B are solutions associated to different values of x although
these points are being plotted in the space of the objectives and not in the space of the

variables.

fo(x) 1

\ :

f,(x)

Figure 8 — Concept of dominance between points B and A.
(AZUMA, 2011).

2.4 Optimization Techniques

The operation of different categories of home appliances needs to be
managed so that the cost related to electricity consumption can be minimized
considering a scenario with variable electric energy prices as a function of the time
interval. Thus, there is a need for a load scheduling method that requires little attention
from consumers regarding configuration and maintenance yet allows the comparison

of costs and benefits of different schedules for home appliances.

The optimization model used by HEMS through the EMC was formalized as
a nonlinear programming problem subjected to a set of constraints associated with
energy consumption and operational aspects related to home appliance categories.
Therefore, the planning of loads must be made automatic with the use of optimization
techniques such as the exact methods in order to find the best feasible solution

considering the objective of the problem and the set of constraints.

Under these circumstances, Informs (1998) presents several computational
tools to solve nonlinear problems, such as, Successive Linear Programming (SLP) and
Generalized Reduced Gradient (GRG and GRG2), which have been used extensively
for many years to solve nonlinear optimization problems in which the objective and

constraint functions can have nonlinearities of any form but should be differentiable.
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The Advanced Multidimensional Modeling System (AIMMS) features a
mixture of declarative and imperative programming styles which allow mathematical
optimization problems such as nonlinear programming to be solved. The Large-Scale
Generalized Reduced Gradient (LSGRG) for a Mathematical Programming Language
(AMPL) and AMPL Plus provides the ability to solve nonlinear models with integer
variables. MINOS for AMPL using a variety of adaptive algorithms, MANOS can

robustly solve problems with thousands of nonlinear constraints.

Lastly, LINGO is optimization software for mathematical modelling that
allows solving various models such as linear, quadratic and general nonlinear integer
models. LINGO separates the model in parts and, it solves the problem in each part in
a different way because it has several techniques with advanced solutions such as cut
generation, tree reordering to reduce tree growth dynamically, and advanced heuristic
and presolve strategies. LINGO utilizes GRG and SLP for nonlinear (NL) models and
Branch & Bound for NL and Linear Programming (LP) models with integer restrictions.

Hereupon, this thesis shows a DR optimization model used by HEMS
through EMC in real time for residential consumers in order to minimize the cost related
to the electricity consumption, with the least possible interference in the convenience
level of the end consumers. Thus, the proposal was computationally solved by LINGO
to determine a new usage scheduling of the home appliances for the whole time

horizon.

2.4.1 LINGO

In 1988, LINGO became the first product of LINDO Systems to include a full
featured modelling language. Users were able to apply the modelling language to
express models using summations and subscripted variables concisely. In 1993,
LINGO added a large-scale nonlinear solver. It was unique in that the user did not have
to specify which solver to use. LINGO would analyze the model and would engage the
appropriate linear or nonlinear solver. Also unique to the LINGO nonlinear solver was
the support of general and binary integer restrictions. In 1994, LINGO became the first
modelling language software to be included in a popular management science text. In
1995, the first Windows release of LINGO was shipped. Today, LINDO Systems
continues to develop faster, more powerful versions (KRISHNARAJ, C.; JAYAKUMAR,
A. ANAND; SHRI, 2015).
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LINGO is a simple tool that uses the power of linear and nonlinear
optimization to formulate large problems concisely, solve them, and analyze the
solution. Optimization helps to find the answer that yields the best result; attains the
highest profit, output, or happiness; or the one that achieves the lowest cost, waste, or
discomfort. Often these problems involve making the most efficient use of your
resources-including money, time, machinery, staff, inventory, and more. Optimization
problems are often classified as linear or nonlinear, depending on whether the
relationships in the problem are linear concerning the variables (LINDO SYSTEMS
INC., 2016).

LINGO includes a set of built-in solvers to tackle a wide variety of problems.
Unlike many modelling packages, all LINGO solvers are directly linked to the modelling
environment. This seamless integration allows LINGO to pass the problem to the
appropriate solver directly in memory rather than through more sluggish intermediate
files. This direct link also minimizes compatibility problems between the modelling
language component and the solver components (JAYAKUMAR; KRISHNARAJ,
2015).

Local search solvers are generally designed to search only until they have
identified a local optimum. If the model is non-convex, other local optima may exist that
yield significantly better solutions. Rather than stopping after the first local optimum is
found, the Global solver will search until the global optimum is confirmed. The Global
solver converts the original non-convex, nonlinear problem into several convex, linear
subproblems. Then, it uses the branch-and-bound technique to exhaustively search
over these subproblems for the global solution. The Nonlinear and Global license
options are required to utilize the global optimization capabilities (KRISHNARAJ, C.;
JAYAKUMAR, A. ANAND; SHRI, 2015).

2.4.2 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a population-based stochastic
optimization method that was first described by James Kennedy and Russell C.
Eberhart in 1995 (BAI, 2010). Various authors (CHHIKARA; SHARMA; SINGH, 2016;
GAING, 2003; LEE; PARK, 2006; REZAEE JORDEHI et al., 2015) claim that PSO has
a relatively simple concept and coding system when compared with other heuristic

optimization techniques and is therefore a popular method to solve optimization
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problems. Moreover, it is less sensitive than other conventional mathematical
approaches and has a low computational cost. PSO techniques are able to produce
high quality solutions in a shorter time frame and with greater stability than other
stochastic methods, also the PSO methods require fewer parameters such as only the
weight factor and two acceleration coefficients, which have less impact on the solutions
compared with other heuristic algorithms.

According to Pedrasa, Spooner and Macgill (2010), PSO is able to find the
solution to an optimization problem through simulation mechanisms of social behavior
of animals (such as a flock of birds and shoals of fish), by analyzing a set of particles
that navigate the space of solutions, in which its trajectory combines its experiences

(solutions with better performance) and the best location they have visited.

Each particle has a position vector that represents the current position of
the particle in the search space, and a velocity vector that is responsible for directing
the particles in position changes in the search space. The idea of the algorithm is that
the particles “fly over” the search space by updating the position of the particle. The
velocity is updated based on the experience of each particle, having a memory of its
best position and the collective experience, indicating the best position among all the
particles (or of a neighbourhood of the particle) (ESMIN; COELHO; MATWIN, 2015).
In PSO, the changes (velocity and position of each change) of the particles are
described by the following equations (ESMIN; COELHO; MATWIN, 2015; PEDRASA,;
SPOONER; MACGILL, 2010):

vit,Zl = vit,k + C17”1(Pbe~9tit,k — pit,k) + ¢y (pgbesty, — pit,k) (9)

Pix =Pik+Vik' (10)

where v{, and p}, are the velocity and position of the i particles, respectively; ¢; and
c, are two parameters representing particle confidence in itself (cognition) and in the
swarm (social behavior), respectively; r, and r, are uniform random numbers
distributed in the range (0,1); pbest; and pgbest indicate the best positions experienced

so far by the it" particle and the whole swarm, respectively.

The particle positions and velocities are initialized randomly. Afterwards,
they move around the solution space guided by Equations (9) and (10). The fitness of
all particles is evaluated, and the global and personal best positions are updated if
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needed. The global best at the end of the simulation is taken as the solution to the
problem (PEDRASA; SPOONER; MACGILL, 2010).

2.4.3 Genetic Algorithm (GA)

The genetic algorithm (GA) is part of the branch of evolutionary algorithms
that was idealized by John Holland in 1975 (HOLLAND, 1975) and later popularized
by David Goldberg. GA is defined as a search technique based on the representation
of the biological process of natural selection proposed by Charles Darwin. Thus, the
fittest individuals survive for the next generation, and GA represents the development
of artificial systems that retain the important mechanisms of natural systems (LINDEN,
2012; REY NARINO, 2014).

Kumar (2013) and Linden (2012) show that Genetic Algorithms present
several advantages in comparison to other methods (exacts and heuristics) in order to
solve optimization problems, which are: (1) is much easier to implement as compared
to other techniques as it requires no knowledge or gradient information about the
response surface, (2) is the ease with which it can handle arbitrary kinds of constraints
and objectives, (3) GAs do not only use local information, so they do not necessarily
get stuck at local maxima, (4) GAs are able to handle discrete and continuous
functions, (5) Optimization problems in which the constraints and objective functions
are non-linear and/or discontinuous are not amenable to solution by traditional
methods such as linear programming. GA can solve such problems and (6) GA use
simple operations, but are able to solve problems, which are found to be

computationally prohibitive by traditional algorithmic and numerical techniques.

According to Lucena (2013), the evolutionary process of the genetic

algorithm is made up of several steps, illustrated in Figure 9:
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Figure 9 — GA Flow Chart.
Initializing the Population:
The first step of a typical GA is the generation of an initial chromosome
population, which is formed by a random chromosome set representing feasible
solutions of the problem to be solved (LACERDA; CARVALHO, 1999).

Evaluation:

During the evolutionary process, this population is evaluated, and each
chromosome receives a grade (known as fitness obtained by the Equation (11),
reflecting the quality of the solution it represents. Commonly, the fittest chromosomes
are selected, and the least able are discarded. (LACERDA; CARVALHO, 1999).

1
Fitness = 11
SN e Y1 (pre * DSAL)? + 0.1 (1)
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Selection:

This GA step aims to select individuals for reproduction. Thus, individuals
are selected considerations the aptitude of these individuals, in other words, the fittest

individuals for a solution are most likely to be chosen for reproduction.

According to Gangwar, Din and Jha (2017) and Lucena (2013), the main

selection methods are:

- Rank: individuals are organized into a ranking in accordance with their
suitability. The probability of choice is assigned considering the position they occupy
in the ranking;

- Roulette Wheel: it calculates the sum of the population rankings (total);
it draws a value i such that i € [0; total]; it selects the individual x which is located in
the sum range of the corresponding to the value i ;

- Tournament: it randomly draws two or more k individuals who compete
with each other and selects the fittest. The higher the value of k, the larger the GA
selection pressure will be.

- Steady State: it is not only a method to select parents for the next
generation, but it keeps the chromosomes with the highest fithess values for the next
reproduction, replacing the bad chromosomes, those with lower fitness values, for new

ones which have higher fithess values.

Lacerda and Carvalho (1999) stated that GA selects the best chromosomes
from the initial population (with the highest fithess) to generate new chromosomes
(which are variants of the parents) through the crossover and mutation operators. An
intermediate population (also called mating pool) is used to allocate the selected parent
chromosomes. Generally, parents are selected with proportional probability to their

suitability.
Crossover:

In this stage, the crossover between individuals takes place in order to
generate new individuals, children. The parents chosen by the selection method are
divided into a randomly selected point called the cut-off point, producing two parts: one
to the left of the cut-off point and one to the right. Thus, the parts are exchanged,

generating two new chromosomes (LINDEN, 2012).
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Kora and Yadlapalli (2017) and Lucena (2013) explains that the most used

crossover operators are the 1-point, k-point, uniform and average, as detailed below:

1) 1-Point Crossover (1PX): this operator uses the single point
fragmentation of the parents and then combines the parents at the crossover point to
create the offspring or child. Two children/offspring are created by matching the
parents at crossover point, in other words, in this type of crossover, a cut-off point is
chosen in the genomes of the parents and part of each is given to the children, as
shown below:

Parent 1: 1010110010
Parent 2: 1011110110
Offspring1: 1010|10110
Offspring2: 1011|10010

2) K-Point Crossover (KPX): similar to 1-point crossover, with the
difference that there are k cut-off points, k is a fixed number. To achieve a good
combination of parents i, t selects more than one crossover point to create the offspring
or child. K-Point Crossover selects the two parents and then randomly selects
k crossover points. Two children/offspring are created by the parents matching at the
crossover point, for example:

Parent 1: 101010010
Parent 2: 11/00]101|10
Offspring1: 10|]00|100]10
Offspring2: 11]|10]101]10

3) Average Crossover (AX): this is a value-based crossover technique. It
uses two parents to perform a crossover in order to create only one offspring and each
gene in a child is taken by averaging the genes from both parents. It selects two
parents as x and y and generates the child z as follows:

Parent 1: 533238765
Parent 2: 547652613
Offspring1: 535445634

4) Crossover uniform (UX): in this crossover, there is uniformity in the bits
matching of both parents. Commonly, a mask of 0 and one built in each crossover is
used. In Uniform Crossover, one indicates that the gene will come from the first parent
and 0 will come from another. To build the second child, the pattern is reversed, such

as.:
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Parent 1: 111010010
Parent 2: 100010110
Offspring1: 110010110
Offspring 2: 101010010
Mutation:
The mutation operator allows the characteristics of selected individuals to
be changed to guarantee variety in the population. Thus, it is necessary for the
mutation operator to associate an extremely low probability to it (of the order of 0.5%).

Otherwise, GA will hardly converge to a good solution.

Lucena (2013) and Soni and Kumar (2014) present some kinds of

mutations:

1) BitFlip: in this mutation, the gene to be mutated has its value altered by
another, randomly drawn within the valid values. In this case (binary representation),
this operator changes the value of the gene from 0 (zero) to 1 (one) and vice versa, for
each 0 (zero) bit or 1 (one) a random percentage (0 to 100) is generated and, if that
percentage is less than the mutation probability, the bit is inverted.

2) Scramble: it works as a permutation encoded chromosome, where n
pairs of genes are drawn and the values of each pair are exchanged between them, in
other words, a subset of genes randomly picked, and the alleles are rearranged in
those positions.

3) Uniform: the mutation operator can only use integer and float genes in
other to replace the values of the chosen one to use a uniform random value selected
from the user specified upper and lower bounds for that gene.

4) Creep: in this mutation, a random gene is selected, and a random value
is added to or subtracted from its gene to be mutated. Its value is changed between
the lower and upper bounds, and real representation is used in this case.

Actualization:

At this stage, the newly created individuals are inserted into the population

for the next generation.
Finishing / Stopping Criteria:

The GA ends its operation when the stopping criteria have been reached,

and the GA closes on a positive case or returns to the evaluation step.
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2.4.4 Non-Dominated Sorted Genetic Algorithm (NSGA-II)

The central idea of the Non-Dominated Sorting Genetic Algorithm Il (NSGA-
II) (DEB et al., 2002), also known as Elitist NSGA-II, is to find a set of non-dominated
individuals in relation to the rest of the population and considers that this set has the
highest level of dominance. Then repeat the same procedure with the rest of the
population, separating it at various levels of non-dominance. Thus, Deb et al. (2002)
state NSGA-Il has an explicit diversity preservation mechanism, and elitism does not

allow an already found Pareto optimal solution to be deleted.

NSGA-Il emerged as an improved version of NSGA (SRINIVAS; DEB,
1994). The traditional NSGA algorithm has some differences about a simple genetic
algorithm (GA) since the solutions are classified based on their dominance information.
That is, for each solution, the non-dominance of this solution (hnumber of solutions that
dominate it) and the set of solutions dominated by it is calculated (COELLO, 2006).
Thus, a ranking is made based on the non-dominance relationship (KUNWAR; YASH;
KUMAR, 2013; SRINIVAS; DEB, 1994).

In addition to non-dominance, the NSGA-II calculates the mean distance
between the solutions along each objective function to obtain the density of solutions
that involves each solution present in the population — crowding distance (COELLO,
2006), a factor that favors the solutions that are better distributed along the non-
dominance frontier or Pareto frontier (PF), preserving the diversity of the solutions and
avoiding a possible premature convergence for a good location (KUNG; LUCCIO;
PREPARATA, 1975; MIETTINEN, 1999).

Thus, the first step of the NSGA-II is the initialization of a population (Pt=o),
with random size Npop. Next, the selection, crossover, and mutation operators are
applied to generate a daughter population Qt=o, also of size Npop. Then an auxiliary
population R0, with size 2Npop, is made by joining the two populations. This auxiliary
population is then sorted by dominance levels, and then the frontier individuals at each
level are inserted following an increasing order of levels in the new population P+1 until
it reaches the size Npop. If the boundary of the last level to be inserted has more
individuals than necessary to complete the new population of size Npop, an ordering of

the individuals of this level by agglomeration distance is carried out. Only the best
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individuals of this last level, sufficient to complete the size of the new population, will
be inserted (DEB et al., 2002).

The remaining individuals from the last level will be discarded along with the
rest of the individuals that were not entered into the new population. The new
population P17 undergoes a selection, crossing, and mutation so that it gives rise to its
offspring, Q1. The process continues until the stopping conditions are reached. At the
end of the algorithm, the individuals of the first level of dominance represent the
solution for the problem (DEB et al., 2002). Figure 10 illustrates the necessary

procedure of the NSGA-II optimization technique.
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Figure 10 — NSGA-II Selection Procedure.
(DEB et al., 2002)

2.5 Related Work

Demand response programs aim to balance the supply and demand of
electricity. Consumers who participate in the DR programs are, according to (SIANO,
2014), able to modify their energy consumption by using load reduction strategies as
well as using non-peak periods to reduce their overall energy consumption. However,
the utilities must be aware of their consumer behaviour profiles in order to establish
changes in electricity prices as well as prepared for any threats that could occur to the
system reliability (VARDAKAS; ZORBA; VERIKOUKIS, 2015).

Demand response programs have successfully reduced costs and
consumption of commercial and industrial consumers, according to Setlhaolo, Xia and
Zhang (2014), but not for residential consumers as there is a need for manual

intervention by residential consumers concerning the use of their home appliances. In
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general, the consumer does not want to be involved in such EPS-related programs,
which consequently prevents the setting up of DRPs in a residential setting. Also as
stated by Roh and Lee (2016), there are many appliances in each residence each with
its energy consumption and operational characteristics. Consequently, there is a need
to compute the energy consumption and characteristics of each appliance in a DR

problem.

Due to the importance of DR in the current scenario, which is heading
towards a possible energy crisis, this issue has been analyzed by various scientific
researchers in order to propose optimization mechanisms for the management of
residential electric energy consumption in Smart Grids. This work reviews each
scientific proposal according to the type of tariff model used (TOU, RTP, CPP) and
also details aspects, such as the objective and the product of the research; the
optimization method; the contributions; and its limitations. The literature on the
development of optimization processes to manage residential electric energy

consumption using price-based DR programs can be categorized into:
2.5.1 Time-Of-Use Pricing

The Time-of-Use (TOU) optimization process has been extensively studied
to solve residential DR-related problems, considering the schedule of home

appliances, which improves energy consumption efficiency.

Silva, Khan and Han (2018) presented a smart home energy management
system that reduces unnecessary energy consumption by integrating an automated
switching off the system with load balancing and appliance scheduling algorithm. The
proposal for minimizing the cost of energy was developed as a mixed-integer
programming problem. The scheduling of appliances adheres to the least slack time
(LST) algorithm while considering user comfort during scheduling. The results of the
computational simulations show that the LST-based energy management scheme
reduces the cost associated with the consumption of electricity. However, the work
does not contemplate the different categories of appliances in the optimized scheduling

of use of the home appliances.

Mahapatra, Moharana and Leung (2017) showed a new method named as
Home Energy Management as a Service (HEMaaS) to manage the use of home

appliances. The main objective of HEMaasS is to shift and curtail household appliance



40

usages so the peak demand and total energy consumption can be reduced. The
authors formulated HEM problem as a set of discrete states, where each state
represents a binary formulation of the power levels of home appliances. The Main
Command and Control Unit (MCCU) issues a command to switch these power states.
The power states formulated as a Markov Decision Process (MDP) and derive its
solution using reinforcement learning (RL) based Neural Fitted Q-lteration (NFQI)
algorithm. However, the results of the computational simulations showed that the
proposal did not consider the simultaneous use of different categories of home

appliances faced with this new optimized scheduling.

An algorithm for thermostat settings to reduce electricity bills was
expounded by Kamyar and Peet (2017). The thermostats settings were desenvolved
as dynamic programming (DP) problem. Kamyar and Peet (2017) use a Partial-
Differential Equation (PDE) model of thermal diffusion to create an algorithm which
determines the thermostat settings which minimize the electricity bill for a consumer
with both TOU and demand charges. The algorithm was able to reduce the electricity
bills by up to 25% in the summer which was 9.2% over other models using data from
the Arizona utility Salt River Project (SRP). However, the proposal only evaluated

thermal appliances without considering the different categories of home appliances.

A load control for optimal residential DR was performed by Wang and
Paranjape (2017a). The proposal aimed to minimize electricity payments and waiting
time and was designed as linear programming (LP) problem. A software home agent
(HA) is designed to predict and control electricity loads. The results of the proposal
showed that the peak-to-average power ratio (PAR) and electricity bills were
significantly reduced. Moreover, the models and the control mechanism can be set up
in a residential energy management system (EMS) for decision making for

homeowners responding to the DR policies.

An electricity load scheduling algorithm was also propounded by Roh and
Lee (2016), which controlled the operational times and energy consumption levels of
the home devices. The loads were managed as mixed integer nonlinear programming
(MINLP) problem. The authors used the Benders decomposition approach to solve the
problem with low computational complexity. Therefore this algorithm was more
flexibility than other algorithms, and the balance between satisfaction (use of

equipment) and cost can be controlled by the consumer. Moreover, the algorithm can
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be applied to any appliance. In this case, the proposal was restricted to only one

residence.

Setlhaolo, Xia and Zhang (2014) implemented an optimization model with
the time-of-use electricity tariff where the main goal was a cost reduction linked to
consumption, and it was developed as a mixed integer nonlinear programming
problem. The formulated model is solved with AIMMS software, which uses Aimms
Outer Approximation Algorithm (AOA) that utilizes CPLEX and CONOPT as mixed
integer programming (MIP) and nonlinear programming (NLP) as solvers respectively.
The model, differently from other standard models, considered the inconvenience level
of appliance programming. However, by moving consumption to off peak periods linked
to varying prices and incentives the model can obtain a 25% saving or more. The
computational simulations of this work only used a sampling time interval of 10 minutes
and a single residence containing ten residential apparatuses. Thus, this proposal did
not consider in the computational simulations the different categories of home

appliances.

Asare-Bediako, Kling and Ribeiro (2013) lodged a multi-agent based
architecture for optimal energy management in smart homes. Four optimization
strategies — comfort, cost, green (energy-efficient) and smart (demand side
management) - are proposed and explained. The household devices are modelled in
MATLAB, and the JAVA/JADE platform is used for the agent design and
communication. However, the proposal restricts itself to evaluating only the washing
machine, dishwasher, heat pump and PV system without considering the different
categories of home appliances. Moreover, consider only the level of satisfaction and

comfort of home owners in relation to thermal comfort.

Ozturk et al. (2013b) broached a DR System for residential loads within the
consumer comfort zone. The system predicts the consumption and informs the utility
of the demand in order to optimize consumption. The scheduling of the operation of
residential appliances was developed as a non-convex programming problem. The
proposed energy management solution learns and adapts to the residential energy
usage patterns. The adaptive neuro-fuzzy learning algorithm developed makes DR
decisions based on the following factors: 1) peak load forecast, 2) differential electricity
prices, 3) customer’s usage patterns and energy budget, 4) social and environmental

factors, and 5) available solar power. The proposal supplies a system that optimizes
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the running times of the appliances and reduces the price of the electricity consumed.
However, incorrect settings made by the consumer may introduce higher costs.
Moreover, this proposal was limited to seven home appliances and did not consider

the different categories involved.

Pipattanasomporn et al. (2012) conceived an algorithm to manage the
residential loads, to reduce the total consumption of electric energy considering the
preferences of the consumers. Also, the authors presented a simulation tool in C++
that was developed to simulate DR events to exemplify the applicability of the proposed
algorithm. However, the proposal restricts itself to evaluating only the air conditioners,
water heaters, clothes dryers, and electric vehicles without considering the different

categories of home appliances.

An electricity load algorithm was proposed by Lee and Lee (2011) to
schedule and control each appliance regarding operational time and energy
consumption. The aim of this load algorithm is to minimize residential electricity bills.
The proposal was developed as a convex programming problem. The algorithm
successfully reduced residential electricity bills by re-scheduling the operational times
of the domestic appliances taking into consideration their specific operational and
energy consumption characteristics. However, the authors only included four home

appliances in the program without considering their different categories.

A scheduling framework, which models decision problems, was built by Sou
et al. (2011). The scheduling framework, designed as a mixed integer linear
programming (MILP) problem, solves configuration problems related to different home
appliances considering the tariffs. The MILP scheduling problem is solved using
CPLEX (using the YALMIP MATLAB interface). Thus, The proposal can reduce 47%
of the cost of electricity, and it can be used with renewable energy, storage batteries
and to optimize energy consumption and CO2 emissions. However, it only considers

the satisfaction and comfort level of the home owners.

TOU is a rate that provides various electricity pricing in different time periods
such as daylight hours, weekdays and weekends. It is commonly predetermined with
months or years in advance becoming it static throughout the application period.
Yudong Tang et al. (2005) state TOU can occasion a few problems, such as:
consumers do not respond immediately to the pricing because its lack of knowledge

and experience; peak time may become a period of lower consumption and vice versa
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due to large consumer responses (TOU rate at an unreasonable price); energy utilities
may have reductions in their profits by purchasing electricity at a certain price and
selling it at a lower rate determined by the TOU pricing. Under these circumstances, it

is necessary to analyze the applicability of other rates in the load scheduling process.
2.5.2 Real-Time Pricing

According to Lujano-Rojas et al. (2012), the Real-Time Pricing (RTP) allows
the price of electricity to change hourly over the time horizon, thus reflecting the real
cost of electricity. Consequently, many recent scientific research projects aim to
implement optimization processes to reduce the consumption and electric bill of the

consumers.

Lin and Hu (2018) proposed a constrained Particle Swarm Optimization
(PSO)-based residential consumer-centric load-scheduling method. The proposal was
developed as linear programming (LP) problem. The main objective of the work is to
shift load profiles by home appliances as well as cut down on peak energy demands
through a new constrained swarm intelligence-based residential consumer-centric
DSM method. The swarm intelligence, constrained PSO, is used to minimize the
energy consumption cost while considering users’ comfort satisfaction for DR
implementation. However, the proposal only evaluated the programming of nine
appliances in a household. Thus, the proposal does not consider the different

categories of home appliances.

Prajwal and Gupta (2018) produced a smart home energy management
system to detect the peak times or supply power shortage times and do the necessary
action so that the consumer does not face any issue. The system as a whole consists
of two modules, a load forecasting module which will forecast the next day load of the
smart home and an energy control module which will accept the inputs that are required
for the continuous power supply during a power failure with also economic utilization
of the energy. The smart home energy management system takes into consideration
the nonlinear system of inputs and takes action in supplying the electrical energy
continuously while also reducing the cost. The developed fuzzy logic system is tested
for the various conditions of the input in the MATLAB/Simulink environment with the
varying input such as electricity price of the day, load forecasted from the energy

control module, state of charge level in the battery and the supply power availability.
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However, the results of the computational simulations showed that the proposal did
not consider the simultaneous use of different categories of home appliances nor the
level of satisfaction and comfort of the consumers faced with this new optimized

scheduling.

Nizami and Hossain (2017) displayed an optimal scheduling model for
Demand Response (DR) based Home Energy Management System (HEMS) that
schedules residential electrical appliances and Distributed Energy Resource (DER)
units for active residential consumers. The proposal was designed as a mixed-integer
linear programming (MILP) problem and aims to minimize the electricity expenditure of
the consumer while maintaining an optimal comfort level. MATLAB optimization
toolbox is used to develop the MILP-based scheduling model. The proposed HEMS
model is simulated and verified with a case study for a typical house, and the simulation
showed positive results with up to 18% energy expenditure savings for the consumer.
However, the authors restrict themselves to only evaluating one residential unit, and
the proposal only evaluated four devices without considering the different categories

of home appliances.

A multiagent system was introduced by Wang and Paranjape (2017b) to
manage a residential DR program. The aim was to reduce the peak-to-average ratio
(PAR) as well as the final costs. The consumption control is made into a convex
programming problem and can thus minimize the cost of electricity under real-time
pricing. However, only the satisfaction and comfort levels regarding electric vehicle

recharging schedules were considered.

Zhang et al. (2016) produced a decoupled DR strategy and an
interdisciplinary mechanism that integrates machine learning in artificial intelligence,
optimization in mathematics, and data structure design in computer science to develop
DR and HEM systems. The loads (HVAC and deferrable) scheduling problem can be
solved separately through linear or nonlinear programming method for HVAC and
binary integer programming technique for deferrable loads providing a final optimal
solution. Thus, this work has as main objective is to develop an integrative and
adaptive demand response and HEM system considering variable and real-life
conditions. Therefore, according to the authors, the proposed DR and HEM technique
can be adaptive to real-life weather, seasonal, and house condition changes.

Furthermore, the work did not evaluate the impact of modifying the programming of
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different categories of home appliances on the satisfaction and comfort of the

consumers.

Reballo and Casella (2016) showed a mobile application to remotely
manage the home appliances operation. The proposal aims to handle different
residential appliances to reduce the cost associated with electricity consumption. The
load schedule is formulated as a constrained optimization problem. Thus, it is based
on genetic algorithms (GA) to solve the load scheduling problem. However, it does not
include in its formulation the different categories of home appliances. Also, the
proposal is restricted to evaluate only the refrigerator, batteries, air conditioning, pump,

and electric stove.

Jovanovic, Bousselham and Bayram (2016) suggested a new demand
response scheduling framework for an array of households, which are grouped into
different categories based on socio-economic factors, such as the number of
occupants, family decomposition and employment status. The proposal considers the
preferences of participating households and aims to minimize the overall production
cost and, in parallel, to lower the individual electricity bills. The proposal was
mathematically designed as a mixed integer programming problem. The model was
implemented using IBM ILOG CPLEX and executed using the default solver settings.
The computational simulations showed that coupling the preference levels of the
consumers with the associated job descriptions can be beneficial, for both the
customer and the utility company. The results also showed that the reduction in the
operations of the utility company could also be reflected in customer bills using
incentives. A significant level of savings in production costs can be achieved while
maintaining a high degree of satisfaction for the participating households. Also, further
savings can be achieved by allowing a higher level of maximal dissatisfaction for
households. However, the work presented does not consider the different categories
(interruptible and deferrable, uninterruptible and deferrable, uninterruptible and non-

deferrable) of home appliances.

Muratori and Rizzoni (2016) broached a dynamic energy management
framework based on energy consumption models. The optimal control problem is
solved using dynamic programming, finding the global solution that minimizes a cost
function. The algorithm is general, and different cost function could be selected to

achieve different objectives. Simulation results show that the modelling proposed in
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this paper can serve as a tool to study energy policy solutions, including evaluating
and comparing the effects of different electricity price structures and developing
effective residential demand response programs. However, the work did not evaluate
the impact of modifying the programming of different categories of home appliances

on the satisfaction and comfort of the consumers.

An algorithm for a Home Energy Management Scheduler (HEMS) that could
manage residential energy consumption to reduce the electricity bill was built by
Vivekananthan, Mishra and Li (2015). Stochastic dynamic programming was
developed to manage the home appliances. Thus, the Markov decision process (MDP)
is used to minimize the cost of energy consumption by predicting the appropriate
curtailment of appliances based on the stochastic behaviour of the cost of
consumption. The work only evaluated the programming of seven home appliances
and did not consider the impact of modifying the programming of different categories

of home appliances on the satisfaction and comfort of the consumers.

Oladeji and Olakanmi (2014) conceived an approach to minimize the overall
cost of electricity payment. The residential load management approach is formulated
as a constrained optimization problem and to solve the optimization problem was used
Genetic Algorithms (GA). The results confirm that GA can optimize energy
consumption, thus minimizing overall electricity cost for ends consumers. However, in
the computational simulations, the authors only included five home appliances without

considering the different categories of these appliances.

Samadi et al. (2014) established two interactive algorithms based on the
stochastic approximation technique to minimize peak-to-average ratio (PAR) in
aggregate load demand. The proposal was developed as mixed-integer linear
programming (MILP) problems and to solve the optimization problem was used
software MOSEK. The authors also proposed the use of a system simulator unit (SSU)
that employs approximate dynamic programming to simulate the operation of the ECS
devices and users’ price-responsiveness. However, the results of the computational
simulations show that the algorithms do not consider the simultaneous use of different
categories of home appliances and the level of satisfaction and comfort of the

consumers faced with the optimized scheduling of such home appliances.
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Nair and Rajasekhar (2014) devised a DR algorithm to control energy
consumption. The DR algorithm is formulated as a linear programming (LP) problem
with an objective to minimize the cost of electricity consumption on the customer side
or maximize the profit on the utility side. The proposal aimed to modify the residential
electricity consumption profiles considering the daily price of electricity and the
preferences of consumers regarding the use of home appliances. The optimization
problem is modelled in MATLAB and solved using GUROBI-MATLAB interface.
However, the proposal restricted itself to evaluating only five consumers with a single

standard of consumption and seven home appliances.

Zhou et al. (2014) exhibited a system to manage the consumption of
residential electricity in real time. The approach was developed as a mixed integer
programming (MIP) problem and can deal with complex operational environments and
thus reduce costs associated with consumption. The problem is solved by combining
hour-ahead (half-hour or 15 min) rolling optimization (RO) over the next 12 or 24 hours
and the real-time control strategy (RTCS) for each minute. The economic dispatch of
controllable loads can be achieved by the hour-ahead scheduling. The real-time control
speed is ensured by the practical control strategy. However, different categories of

home appliances were not included.

A New Traversal-and-Pruning (TP) algorithm for thermostat schedules for
load control was designed by Wang et al. (2013a). The aim was to reduce costs and
increase consumer comfort. It was developed as a mixed integer nonlinear
programming problem. The new TP algorithm had a better performance than existing
ones considering: optimization, robustness, speed, and flexibility to solve commitment
issues. Also, it can be applied in home and building energy management systems, thus
optimizing device load schedules. Moreover, it helps consumers set up optimal load
schedules with lower cost and higher comfort. However, this work only evaluated the
programming of thermal devices, such as electric water heaters (EWH).

An approach to managing residential loads to reduce costs and the peak-
to-average ratio (PAR) by scheduling operations was assembled by Zhao et al. (2013).
The proposal was developed as a nonlinear programming problem and to solve the
optimization problem was used as a genetic algorithm (GA). However, only nine types
of home appliances were considered, and only sixteen operations per planning horizon

were considered, and these must be programmed by the consumers.
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A demand management approach, which was developed as a nonlinear
programming problem, to manage different categories of home appliances
simultaneously was made by Logenthiran, Srinivasan and Shun (2012). The objective
of the proposal is to schedule the operation of the home appliances in order to bring
the final load consumption curve as close as possible to the curve obtained from the
goal defined by the energy utility, in order to achieve the desired management strategy.
However, the proposal does not include in the simulations computational the different
categories (interruptible and deferrable, uninterruptible and deferrable, uninterruptible

and non-deferrable) of home appliances.

In Chen, Wu and Fu (2012), a real-time DR management model is exposed
in order to assist end consumers in the automatic operation of their home appliances.
The scheduling of the home appliances is managed as a whole mixed-integer linear
programming (MILP) problems. The stochastic optimization adopts the scenario-based
approach via Monte Carlo (MC) simulation for minimizing the expected electricity
payment for the entire day, while controlling the financial risks associated with real-
time electricity price uncertainties via the expected downside risks formulation. Price
uncertainty intervals are considered in the robust optimization for minimizing the worst-
case electricity payment while flexibly adjusting the solution robustness. However, the
results of the computational simulations show that the proposal is limited to evaluating
the programming of only six home appliances without considering the different

categories of these apparatuses.

In Du and Lu (2011), a new appliance commitment algorithm that schedules
thermostatically controlled appliances (TCAs) based on price and consumption
forecasts in real time was implemented. The energy consumption scheduling problem
is formulated as a nonlinear optimization problem that aims to minimize the electricity
payment subject to the user-comfort constraint. However, this work only evaluated the
programming of thermal devices without considering the different categories of home

appliances.

Conejo, Morales and Baringo (2010) presented a real-time DR model
developed as linear programming (LP) problem, using the robust optimization
technique to model changes in the price of electricity. The aim of the proposal is to
adjust load levels in response to hourly electricity price changes, leading the residential

consumer to use as little electricity as possible but not considering the inconvenience
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caused to him. The proposal also does not consider the different categories of home
appliances and the individualized representation of loads, which implies an optimal

solution to the problem that is not feasible in a real scenario.

In Mohsenian-Rad and Leon-Garcia (2010), a framework was devised to
optimally schedule household appliance operations which aims to achieve a trade-off
between minimizing the payment and minimizing the waiting time for the operation of
each household appliance. The scheduling of the home appliances is managed as
whole linear programming (LP) problem and to solve the optimization problem was
used interior-point method in polynomial computation time. Simulation results show
that the combination of the proposed energy scheduler design and the price predictor
leads to significant reduction in users’ payments. This encourages the users to
participate in the proposed residential load control program. However, the proposal
does not include in the simulations computational the different categories of home

appliances.

The RTP rate offers electricity prices that change every hour reflecting the
variations of wholesale market prices. Thus, unlike the TOU that presents static values
for electricity, RTP warns consumers of the price of electricity with hours or day in
advance. Therefore, RTP it allows to offer the greatest feedback to end consumers in
relation to the potential savings in the electricity bill (AZEVEDO; FLORA, 2017).

2.5.3 Critical-Peak Pricing

Critical-Peak Pricing (CPP) is a dynamic tariff model that uses TOU and
RTP tariff elements to adjust the price of electricity in a temporary response to events
or conditions, such as high market prices, network consumption peaks or decreasing
reserves (WANG et al., 2013b). Some research has been done to analyze the impact

of the optimization process and the CPP tariff on the electric power system.

Javaid et al. (2017) propounded a hybrid scheme named GAPSO for
residential load scheduling, to optimize the desired objective function of minimizing the
electricity cost and user discomfort while considering the peak energy consumption.
The GAPSO scheme was implemented and its performance compared against
traditional dynamic programming (DP) technique and two heuristic optimization
techniques: genetic algorithm (GA) and binary particle swarm optimization (BPSO) for

residential load management. They formulated the binary optimization problem
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through a multiple knapsack problem (MKP). The results of the simulation showed that
the proposed hybrid scheme, GAPSO, performed better regarding cost and occupant
discomfort minimization along with the reduction of peak power consumption
compared to its counterpart schemes GA and BPSO. However, the authors did not
contemplate, in the performance analysis for the management of residential loads, the
category that includes heating, ventilation, and air conditioning (HVAC) appliances.

Thus, the devices with high load consumption were not analyzed.

An optimization model was illustrated by Bin et al. (2016) to deal with the
critical peak pricing (CPP) policy. The goal, based on the fee balance mode and the
fee increase mode, was to obtain the best pricing strategy for the CPP days. The
proposal was designed as a mixed integer non-linear programming problem. The CPP
and VP load transfer factors were assumed to have certain values; therefore, further

determination and sensitivity analysis of the two parameters should be carried out.

A Critical Peak Pricing (CPP) dynamic decision-making model was
developed by Yin, Zhou and Li (2015). The charging load of electric vehicles was
considered in this model in order to reduce costs and the peak load. The results show
that this CPP is able to reduce the peak load and the peak electricity price gradually
comes down with an increase in the number of electric vehicles until reaching a stable
level. However, only satisfaction and comfort levels are considered while the different

categories of home appliances are not evaluated.

An optimal non-stationary DSM mechanism was expounded by Song, Xiao
and Van Der Schaar (2014) to minimize the total cost and improve on the optimal
stationary DSM strategy. Designed as a linear programming problem, the proposed
DSM mechanism considered not only the billing costs but also the discomfort costs. It
can model different discomfort costs for different consumers. However, the authors do
not make it clear how the DSM proposal deals with the specific impact of the different
peculiarities of the devices on the daily life of the end consumers.

Siano et al. (2013) introduced a new decision support and energy
management system (DSEMS) for residential applications. The proposal aims to
maintain the efficiency of the network both regarding the continuity of electricity supply
and saving energy and economy. The DSEMS is represented as a finite state machine
and implemented in Stateflow of MATLAB while the residential thermal and electrical

models are implemented in Simulink of MATLAB. The DSEMS allows reducing energy
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costs during the economic scenario of about 18%, while in the case of the comfort
scenario the user comfort is preserved. However, the proposal restricts itself to
evaluating only the air conditioners, lights, dishwasher, washer and dryer without

considering the different categories of home appliances.

A decision-support tool proposed by Pedrasa, Spooner and Macgill (2010)
aims to optimize the energy services for residential consumers. This is carried out by
scheduling the operation of available distributed energy resources. The schedule for
the distributed energy resources (DER) maximizes the net benefit coming from the
services. The net benefit is the total benefits less the energy costs. The proposal was
developed as a stochastic programming problem. The main difference of this tool is
that the end-users put different levels of benefit to different services at different times
of the day. These benefits are used to develop the DER schedules. This approach
enables the curtailment of services if the cost of provision exceeds their benefits. The
results showed that the proposal was limited to four apparatuses without considering

their different categories of home appliances.

CPP uses TOU as its base tariff structure but uses the TOU or RTP tariff
characteristics depending on the situation in the electric power system, for example,
when the network contingencies or the cost of generation are very high. However, CPP
can cause problems such as not specifying the time, duration and number of days that
the electricity price will be high. Thus, the CPP rate is still not widely used and, for this
reason, several surveys are being conducted to verify the CPP efficiency in the home

appliance usage optimization process.

Most of the recent studies presented in this thesis (NAIR; RAJASEKHAR,
2014; OZTURK et al., 2013b; SAFDARIAN; FOTUHI-FIRUZABAD; LEHTONEN, 2014;
VIVEKANANTHAN; MISHRA,; LI, 2015; WANG; PARANJAPE, 2017a) show that the
main goal is to minimize the cost associated with the consumption of electric energy
without considering the preferences/needs of end consumers. Therefore, we can say
that these works do not consider the real difficulty of the problem which involves
scheduling the use of home appliances and they do not evaluate aspects such as: (a)
different residential scenarios; (b) various categories of home appliances; (c) the level
of satisfaction/comfort of consumers with the new scheduling of their home appliances.

Moreover, the studies that dealt with the inconvenience aspect performed simulations
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without contemplating the different categories of home appliances, thus reducing the

complexity of the method.

Based on the assumption presented throughout this section, RTP pricing
was adopted in the experiments performed because it is the one that best reflects the
average price of electricity in the market. Besides that, RTP is the rate that offers the
best feedback to the end consumer regarding the potential of reduction in the total cost
related to electricity consumption as well as the reduction of financial losses for the
electric utility. Table 1 shows a summary of the scientific production review. It highlights
the studies developed to improve the usage of management for home appliances that
apply energy efficiency through price-based DRP in smart grids.
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Chapter 3

HoOME ENERGY MANAGEMENT SYSTEM (HEMS)

In this chapter, the Home Energy Management System (HEMS) architecture is shown in
detail as well as the DR optimization model, which aims to determine the optimum
programming of residential appliances. Thus, the various restrictions associated with
energy consumption are explained here, such as the minimum and maximum limits of the
load for each time interval; ramp limits; minimum consumption related to the time horizon;

and operational restrictions of the home appliance categories.

3.1 Initial Considerations

The Home Energy Management System (HEMS) can include any product
or service that monitors, controls and analyzes the electrical energy of a home.
According to Khan et al. (2015), a HEMS incorporates residential utility demand
response programs, home automation services, personal energy management, data

analysis and visualization, auditing, and related security services.

The HEMSs have been operating for decades, and their main function is to
optimize, monitor and control the flow of electricity (ERTUGRUL; MCDONALD;
MAKESTAS, 2017; KHAN et al., 2015). Thus, this thesis proposes a HEMS that aims
to solve a DR problem involving the minimization of the cost related to the electricity
consumption and the inconvenience level for end consumers through the home
appliance optimized programming. Therefore, the Energy Management Controller
(EMC) of HEMS was implemented through the DR optimization model using different
optimization techniques (Genetic Algorithm (GA), Particle Swarm Optimization (PSO)
Language for Interactive General Optimizer (LINGO) and Non-dominated Sorting
Genetic Algorithm Il (NSGA-II)) in order to (re)schedule the loads of home appliances,
considering the real-time pricing of electricity and the satisfaction/comfort of

consumers.
3.2 Architecture of HEMS

Home Energy Management System is defined as the system that provides

power management services in order to efficiently monitor the generation, storage and
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consumption of electricity in smart homes. Therefore, HEMS consists of demand
response programs, automation services, power management, data

visualization/analysis, auditing and security services (ZHOU et al., 2016).

Home Energy Management System provides bidirectional communication
between homes and the electric utility to monitor, control and analyze the data that
involves the consumption of electricity in smart homes (ZHOU et al., 2016). The
communication technologies, Wide Area Network (WAN), Neighborhood Area Network
(NAN) and Home Area Network (HAN) (KUZLU; PIPATTANASOMPORN; RAHMAN,
2014; YE; QIAN; HU, 2015; ZHOU et al., 2016) used in the smart grid serve as the

basis for the HEMS as proposed in this work.

The HEMS proposed in this work is basically composed of an advanced
metering infrastructure (AMI), a smart meter (SM), an energy management controller

(EMC) and the home appliances. This HEMS architecture is presented in Figure 11.
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Figure 11 — lllustration of home energy management system (HEMS) architecture.
(VERAS et al., 2018a)

The smart meter is equivalent to a communication interface and is usually
mounted between the AMI and EMC in order to collect the electrical energy
consumption data from each device using ZigBee (IEEE 802.15.4) technology
(RAMYA; SHANMUGARAJ; PRABAKARAN, 2011) and it also receives the price of
electricity from the utility company in real time.

The AMI provides intelligent bidirectional communication between the SM

and the utility company. This enables automated measurement functions and also



60

enables the utility company to send real-time data on energy consumption and price.
The information is transmitted or received from the utility company through commonly
available fixed networks such as PLC (Power Line Communication), GSM (Global
System for Mobile Communications) or WiMax (KABALCI, 2016; SIANO, 2014). Thus,
this data can be used for further analysis such as each consumer’s demand for energy
in a specific area or the schedules with the lowest electricity prices that can be used

for moving loads.

The EMC is considered the operating nucleus of the home network and is
responsible for the management of the consumption and production of energy. Based
on this, the proposed HEMS can manage various devices such as electric vehicles,
electrical energy storage systems, renewable energy generation, and home
appliances. HEMS uses an algorithm to allow consumers to monitor and/or reschedule
the configurations of the existing devices in residence according to their needs and the

DR data provided by the AMI, received via the smart meter.

The integration of multiple technologies combined with the optimized control
of the EMC enables intelligent decision making, reliability, and security. An application
of this architecture envisages that the generated and stored electricity can be used
over a time horizon to charge not only electric vehicles but also to provide loads to the
other residential devices when, for example, the cost of electricity is high. Also, HEMS
communications infrastructure enables the consumers to participate actively. This is
because consumers can access the whole process of monitoring, controlling and
managing household energy through an Internet Mobile App. Consumers, with a
HEMS Mobile App, can obtain information about energy consumption, demand and
price of electricity for a certain interval of time via the SM. Thus, consumers can decide

to intervene or not in the optimized programming as suggested by the EMC.
3.2.1 Energy Management Controller (EMC)

This work proposes an EMC that aims to minimize the cost associated with
the consumption of electricity and the level of inconvenience
(dissatisfaction/discomfort) of consumers as well as to guarantee the stability and
safety of the EPS. Figure 12 shows the communication between the EMC and the

different devices used in the residential load management process.
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In HEMS, EMC has an essential role because it manages all home
appliances through the multi-objective DR model of this work and the ZigBee
communication technology involved in switching gadgets on/off. The EMC schedules
all operations based on energy consumption records, the real-time electricity price, and
client preferences. In this work, the residential appliances are divided into three classes
(CHEN; WU; FU, 2012) as follows: interruptible and deferrable; uninterruptible and
deferrable; and, uninterruptible and non-deferrable. Uninterruptible indicates that an
operation cannot be interrupted until it has finished. Non-deferrable and Deferrable
refer to whether an operation may start at the first time slot of the operational window,

or not.

Home Energy Management System makes it easier to control and manage
home appliances, to reduce the electricity consumption costs, the level of
inconvenience associated with the use of appliances and it results in a lower peak-to-
average ratio, which contributes to improving the reliability of the EPS operation. The
multi-objective DR model used by the EMC to manage the residential appliances is

presented below.
3.2.1.1 Optimization Model

The multi-objective DR optimization model presented in this thesis was
formulated as a nonlinear programming problem, which considers the constraints
related to electricity consumption, such as, minimum and maximum load limits for each

time interval; ramp limits; minimum consumption of electric energy related to the time
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horizon; and the aspects associated with the inconvenience level for end consumers
considering the operational restrictions of the home appliance categories. The

mathematical formulation of the multi-objective model is presented as follows:
Indexes and Sets:
The indexes and sets of the multi-objective DR optimization model are:

i Index for appliance

t Index for sub-interval

N Set of indexes of all home appliances

T Set of indexes of all sub-intervals in the entire scheduling time interval
A; Set of indexes of the appliance categories interruptible and deferrable
A;; Set of indexes of the appliance categories uninterruptible and deferrable

A;; Set of indexes of the appliance categories uninterruptible and non-deferrable

Constants:
The problem constants are:

dm™n  Minimum demand for the load levels at each time interval t
dm™**  Maximum demand for the load levels at each time interval ¢
r?  Ramping down limits for the time interval t

rY  Ramping up limits for the time interval t

Variables:

The variables used for modelling the DR problem and the decision variable

needed to manage the home appliance operations are:

Represents the vector for the energy consumption of home appliances i
¢ when in operation
pr; Price of electricity at time t
p; Vector with the power (in kW) of each home appliance
mdc Minimum daily consumption
The initial time slot of the interval that will be checked if the category A;;
home appliances were used without interruption
ST; The start time of the operation

ET; End time of the operation
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Req; Required time for appliance i to finish its operation

Baselinet; is a variable designed as a matrix. It is the real electricity
consumption in the time interval t for the home appliance i of the family analyzed by
the Load Profile Generator (LPG) tool (PFLUGRADT, 2016). It can be defined as
follows:

1,if home appliance i is on at time t,
baseline,; =

0, otherwise.

The DSA,; displays the decision variable of the model that correspond to

the load programming matrix, as follows:
1,if home appliance i is on at time t,
DSA.; = {
0, otherwise.

The multi-objective DR optimization model presented in this thesis has two
minimization functions: f; and f.. The first one (f;) aims to minimize the electricity
consumption costs and the second (f2) to minimize the level of the inconvenience of
end consumers in relation to the optimized planning of residential loads provided by

the utility.

Thus, the minimization of the energy consumption cost f7 is formulated as

follows:

N T
Minimize Z e; Z(prt .DSA.;)? (12)
i=1  t=1

Equation (12) calculates the cost associated with the consumption of
electricity for each consumer, considering the number of home appliances N and the
time horizon T. The first term of the equation YN, e; uses the energy consumption
vector e of each apparatus i which is multiplied by the second term ¥7_; (pr, . DSA, ;).
Therefore, the second term calculates the amount to be paid for each appliance i,
running in time interval t. Thus, the product of the two terms gives the cost associated

with the consumption of electric energy to be paid as suggested by the DSA,; matrix.

Objective function f> aims to minimize the inconvenience and evaluate how
the optimized scheduling of home appliances can modify the satisfaction/comfort of

the end consumer and is given by
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T N
Minimize Z Z(baselinet‘i — DSA.)? (13)
=1i=1

Accordingly, the f. calculation compares the real electricity consumption
(baseline) in the time interval t for the home appliance i of the family analyzed by the
Load Profile Generator (LPG) tool (PFLUGRADT, 2016) and the DSA,; consumption,
which is the consumption suggested by the optimization technique, and which was
used in the computational simulations. The LPG is a modeling tool for residential
energy consumption and it performs a full behavior simulation of the people in a
household which it uses to generate load curves (PFLUGRADT, 2016).

The objective function fzillustrated in Equation (13), evaluates the difference
between the real consumption (baselinetj) and the suggested (DSA; ;) for each time
interval t, for each home appliance i considered in the problem and shows how much
the consumption suggested by the optimization technique distances itself from the
actual consumption pattern of the family under analysis. Therefore the optimal solution
will be the one that will affect the usage of the home appliances the least, while at the
same time reducing the cost of electricity consumed. The smaller the difference
between the normal consumption and the one suggested by the optimization

technique, the better this solution will be.

The f; and f. objective functions are subjected to different constraints

detailed as follows:
Constraints for f1 objective function:

Constraint 1 (14) establishes the limits (minimum and maximum) for the load
levels at each time interval t where pj(i=1,...,N) is the vector with the power (in kW) of
each home appliance. This constraint aims to guarantee that the electricity
consumption per hour does not violate the minimum/maximum limits established by

the utility.

N
dlnin < Z DSAt,i -Di < d%naxxvtzl,...,T (14)

i=1
Equation (14) calculates the consumption of electricity at each time interval
t by means of the product between the matrix DSA, ; and the vector with the power

requirements of each apparatus p;. Thus, Equation (13) indicates when the
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consumption of electric energy in a given time interval ¢t exceeds the minimum and

maximum limits determined by the variables d™"/d™** respectively.

Constraint 2 (Equation 15) defines that the difference between the
consumption of electric energy in the time interval t, obtained by the product of
DSA. ;.p; and the energy consumption in the subsequent time interval ¢t + 1, indicated
by the product of DSA.,;.p;, considering the ramping down limitr r? for the time
interval t. Therefore, Equation (15) aims to limit the increase in electric energy
consumption in the interval of time t caused by the displacement of loads from

subsequent time interval t + 1.

N
Z(DSAt,i - DSAt+1,i) Di = rP, Viz1,.1-1 (15)

=1

Constraint 3 (Equation 16) defines that the difference between the energy
consumption in the time interval t + 1 obtained by the product of DSA,,,;.p; and the
energy consumption in the previous time interval t, indicated by the product of
DSA;;.p;, does not exceed the ramping up limit ¥ for the time interval t. Thus,
Equation (16) aims to limit the increase of electric energy consumption in the interval
of time t + 1 caused by the displacement of the loads from previous time intervals t.

N
(DSA¢y1,; — DSALy) .pi < rY, Vi=1,.1-1
=1

(16)

L

Therefore, the constraints 2 (15) and 3 (16) help to stabilize the electric
power system (EPS) in relation to any sharp displacements of loads over the time

horizon T.

Constraint 4 (Equation 17) establishes the minimum daily consumption
(mdc). The mdc is the product of the matrix DSA,; and the vector of energy
consumption e; in residential appliances i when in operation, garanteeing a minimum

daily usage of the residential appliances N.
N T

Z Z DSA;;.e; = mdc 17)

i=1t=1
The constraints 1-4 (Equations (14) to (17)) describe common features for

the consumption of electricity. In this work, the home appliances are divided into three

categories based on their operational characteristics (CHEN; WU; FU, 2012) as
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follows: interruptible and deferrable (4;); uninterruptible and deferrable (4;;); and,
uninterruptible and non-deferrable (4,;;). Uninterruptible means that a task cannot be
interrupted until it is completed. Non-deferrable and Deferrable determine whether the
task must start at the first time slot of the operational window, or not. Based on these
definitions, the restrictions that deal with the different categories of home appliances

A;, A;; and A, can beare specified below.
Constraints for f2 objective function:

Constraint 5 (18) states that the operational startup of category A/ home
appliances may vary over the time horizon T provided that Req; is respected. The
Constraint 5 is active, it ensures the operation of the residential appliance i for a
minimum time Regq; in a time horizon T. A violation of this rule implies failure to a a
comply with the required operating time of the home appliance i, thus impairing the

correct usage of the appliance.

T
Z DSA; > Reqy,V; € A, (18)
t=1

Constraint 6 (Equation 19) states that the operational startup of category
A;; the home appliance can be delayed within the time horizon T but, once it has
started, it cannot be interrupted. Therefore, the activation of this constraint ensures
that the execution of the residential appliance i over of a time horizon T, has a minimum
duration required for a number of consecutive time intervals greater than or equal to
Req;. A breach of this restriction infringes the uninterrupted performance of A

appliances.

T—Req; Req;+(q—1)

Z 1_[ DSA.; > 1,V € Ay (19)

q=1 t=q

Constraint 7 (Equation 20) establishes that the operation of a category
A;;; home appliance between its startup (ST;) and end (ET;), as defined by the
consumer, is uninterruptible for the required time Regq; in the time horizon T. When
Constraint 7 is active it ensures tha, t the operation of the residential appliance i of
category A;;; takes place for the minimum time defined by Req; between the opening

times ST; and end ET; defined by the consumer. Violation of this restriction makes the
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uninterrupted and non-deferrable operation of these A;;; residential appliances

impossible.

ET;

Z DSA; > Reqy,V: € Ay (20)

ST;
3.3 Final Considerations

In this chapter, the concepts involving the Home Energy Management
System were presented, highlighting the HEMS architecture is emphasizing its main
components: AMI, SM, EMC, and Home Appliances. The EMC functionality was
detailed in Section 3.2 because it is the part implemented in this thesis.

A mathematically formulated multi-objective DR optimization model was
presented as nonlinear programming (NLP) problem to determine the optimal
scheduling of home appliances considering real-time pricing (RTP) as well as different
categories of the appliance. The multi-objective DR optimization model aims to
minimize the cost of energy consumption and minimally affect convenience
(satisfaction/comfort) of end consumers. The main constraints are minimum and
maximum load limits for each time period; ramp limits; minimum consumption within
the planning horizon; and some restrictions for the different home appliance

categories.



Chapter 4

ANALYSIS OF THE RESULTS

This chapter presents an analysis of the results through the HEMS using the different
optimization techniques LINGO, GA, PSO and NSGA-II for the mono-objective and multi-

objective DR optimization model, respectively.
4.1 Initial Considerations

The DR optimization model presented in this work was based on the load
shifting technique that modifies the pattern of residential electricity consumption over
the time horizon (DENG et al., 2015). Thus, the demand usually required in peak
periods was shifted to another time of lower consumption; consequently, the consumer
maintained the same total daily consumption without overloading the system during

peak periods.

Therefore, in the experiments of this thesis was considered the preferences
of the consumers regarding their home appliances, the price of electric energy per hour
and the diversity of geographic information based on the location, the climate and their

respective implications for each region of Brazil, as illustrated in Figure 13.
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Figure 13 — Average Temperatures (°C) for 2016.
(INMET, 2016)
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Additionally, Figure 14 shows the average of the maximum and minimum
temperature for the year 2016 (INMET, 2016). Due to the dimensionality of Brazil, there
are several temperature values for each region throughout the year causing different

profiles of family behaviour concerning daily routines.
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Figure 14 — Temperatures (°C) for 2016 by Cities: (a) average annual maximum temperature;

and (b) average annual minimum temperature.
(INMET, 2016)

In this chapter, an analysis of the results obtained through the HEMS using
the different optimization techniques LINGO, GA, PSO and NSGA-Il for the mono-

objective and multi-objective DR optimization model, respectively were presented.

Under these circumstances, due to the complexity of optimizing
combinatorial problems involving the minimization of the cost related to the electricity
consumption with the minimum effects on the convenience levels of the end
consumers, computational simulations are necessary to compare the results obtained
through optimization techniques LINGO, GA, PSO, and NSGA-II. This comparison can
demonstrate the efficiency of the different techniques in the optimization process for
the various home appliance categories. Therefore, the problem formulated in this
thesis is solved using LINGO, GA PSO and NSGA-II optimization techniques.

4.2 Experimental Scenario 1 (Mono-Objective)

In this section, Equation (13) of the DR optimization model, which was
described in detail in Section 3.2, is no longer an objective function and becomes an
equation for calculating the inconvenience value (dissatisfaction/discomfort) for end
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consumers. In addition, the analysis of the results through LINGO, GA and PSO
techniques, the discussions and the parameters used in the optimization process

related to load schedule are presented.
4.2.1 Optimization Process by LINGO

In the experiments, Equation (13) of the DR optimization model stops being
an objective function and becomes an equation for calculating the consumer
inconvenience value in order to evaluate how the operating schedule of the home
appliances can interfere with the satisfaction and comfort of the end consumers
through inconvenience values. Therefore, Equation (13) compares the real energy
consumption (baseline) in the time interval t for the home appliance i of the family,
which is analyzed through the Load Profile Generation (LPG) tool (PFLUGRADT,
2016), and the consumption obtained by the optimization techniques (DSA) used in the

computational simulations.

The inconvenience value checks the difference between the actual
consumption and the suggested consumption for each time interval and each device
under consideration and shows how much the consumption suggested by the
optimization technique distances itself from the actual consumption pattern of the
family under analysis. Assuming that the solution that is considered optimal will affect
the normal use of residential appliances minimally, besides reducing the final price,
then the smaller the difference between the normal family consumption and the
proposed optimized one, the better the solution will be. Based on this assumption, the
calculation of the inconvenience associated with a home appliance operation

scheduling allows the consumer to decide whether or not to join the DR program.

The mathematical formulation was implemented in the software LINGO version 17.0 (
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Appendix A: Script LINGO Nonlinear Programming) using an educational
license. In the modelling, the information collected through the LPG tool
(PFLUGRADT, 2016) was used as the database, referring to the consumption of
residential electricity for the day of greatest and least energy consumption in the year

2016. The input and output data were aided by Microsoft Excel.

In the experiments, some parameters were considered, as described in
Table 2, for 30 families with different profiles of energy consumption (Profile 1 — a single

adult, Profile 2 — two adults, and Profile 3 — two adults with three children).

Table 2 — Parameters.

Parameter Value

Maximum demand for time interval (d™2*) 3 kW
Minimum demand for time interval (d™") 0 kW
Ramping up limit (rY) 1 kWh

Ramping down limit (rP) 1kWh

Other adjustments were also required to complete the optimization process
by LINGO, such as Global Solver Options, NLP Solver Version, Derivatives (First
Order) and Strategies using the following settings respectively: Use Global Solver,
Version 3.0, Solver Decides and Quadratic Recognition and SLP Directions. Also, each
city has a different mdc parameter as each family had a consumption based on the
geographic locations with their respective climates and temperatures. Furthermore, the
profile had different numbers of home appliances: Profile 1 (290 appliances), Profile 2
(330 appliances) and Profile 3 (230 appliances), totalling 850 appliances for analysis.
Table 3 shows the load profiles and the different categories of the home appliances
classified according to their respective categories (interruptible and deferrable (A _I),
uninterruptible and deferrable (A_Il) and uninterruptible and non-deferrable (A_lll)). An
“interruptible” task may be stopped/interrupted before it finishes while an
“uninterruptible” task may not be stopped/interrupted before it finishes. The term “non-
deferrable” means that the task must start at the first time slot of the operational
window, while “deferrable” means that this is not obligatory (CHEN; WU; FU, 2012).
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Table 3 — Profiles and Categories of Home Appliances.

Profile Categories Home Appliances
Light 100 W, 20 W, and 60 W, SAT-Receiver, TV, Cell Phone
4 Charging, Playstation, Microsoft Xbox, Laptop, CD/DVD Player,
I Computer, Home Cinema System, DVB-T Receiver, Router, Computer
1 Screen, Kitchen Radio.
Wine Cellar, Steam Iron, Hair Dryer, Electric Razor, Electric Stove,
Ay Electronic Hometrainer, Microwave, Juicer, Washing Machine, Toaster,
Electric Kettle, Nespresso Coffee Machine.
Ay Refrigerator, Air Conditioning, Electric Heater, Freezer, Dryer.
Light 100 W, 20 W, and 60 W, SAT-Receiver, TV, Playstation, Laptop,
A, CD/DVD Player, Computer, DVB-T Receiver, Router, Computer
2 Screen.
4 Wine Cellar, Steam Iron, Food Multiprocessor, Microwave, Washing
i Machine, Electric Kettle, Nespresso Coffee Machine.
A Refrigerator, Air Conditioning, Electric Heater, Freezer.
Light 100 W, 20 W, and 60 W, SAT-Receiver, TV, Cell Phone
A, Charging, Microsoft Xbox, Laptop, CD/DVD Player, Computer, DVB-T
3 Receiver, Router, Computer Screen, Kitchen Radio.
4 Wine Cellar, Steam Iron, Hair Dryer, Electric Stove, Microwave, Juicer,
m Washing Machine, Toaster, Electric Kettle, Nespresso Coffee Machine.
A Refrigerator, Air Conditioning, Electric Heater, Freezer, Dryer.

Profile 1 — a single adult

Table 4 and Figure 15 displays a comparison of the results for the total cost

of electricity for families living in the 10 Brazilian capitals on the day of the highest

energy consumption. Thus, the family living in the city of Rio de Janeiro - RJ, compared

to the other families in other cities (Belém-PA, Palmas-TO, Brasilia-DF, Cuiaba-MT,
Jodo Pessoa-PB, Teresina-Pl, Sdo Paulo-SP, Curitiba-PR, and Florianépolis-SC) had
the largest reduction in cost of electricity from R$ 0.94 to R$ 0.84.

Table 4 — Cost of Electricity by Family on the Day of the Highest Energy Consumption

(Profile 1).
Family Cities Cost without | Cost with | Reduction
DR (R$) DR (R$) (%)

I Belém-PA 2.26 2.14 5.31
Il Palmas-TO 1.20 1.15 417
Il Brasilia-DF 1.73 1.64 5.20
\Y] Cuiaba-MT 1.39 1.35 2.88
V Jodo Pessoa-PB 1.74 1.66 4.60
VI Teresina-PlI 1.13 1.07 5.31
VII Rio de Janeiro-RJ 0.94 0.84 10.64

VI Sao Paulo-SP 2.44 2.36 3.28
IX Curitiba-PR 2.43 2.28 6.17
X Florianépolis-SC 2.55 2.54 0.39
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Another analysis was the evaluation of HEMS using the DR optimization

model by LINGO to minimize the total cost of electricity on the day of the least

consumption. Table 5 and Figure 16 show that it was possible to reduce the total cost

of electricity in all the families studied. The family in Jodo Pessoa-PB had the largest

reduction in the cost of electricity (from R$ 0.61 to R$ 0.32) if compared to other

families.

Table 5 — Cost of Electricity by Family on the Day of the Lowest Energy Consumption (Profile

1).
Famil Cities Cost without | Cost with | Reduction

y DR (R$) DR (R$) (%)

| Belém-PA 0.76 0.72 5.26

Il Palmas-TO 0.92 0.87 543

1l Brasilia-DF 0.34 0.28 17.65

\Y Cuiaba-MT 0.40 0.33 17.55

V Jodo Pessoa-PB 0.61 0.32 47.54

VI Teresina-PI 1.08 0.97 10.19

VII Rio de Janeiro-RJ 0.35 0.31 11.43

VIII Sao Paulo-SP 0.53 0.47 11.32

IX Curitiba-PR 0.19 0.17 10.53

X Florianépolis-SC 0.32 0.28 12.50
1 |- |
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Figure 16 — Cost of Electricity by Family on the Day of the Lowest Energy Consumption
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Additionally, the inconvenience level for the days of highest and lowest
energy consumption for each family was calculated. So, the highest inconvenience
value found for the days of highest and lowest consumption of electric power was 144
and 102 for the families located in the cities of Curitiba-PR and Jodo Pessoa-PB,
respectively.

Table 6 and Table 7 summarizes the simulation results for the
inconvenience in each family resident in Belém-PA, Palmas-TO, Brasilia-DF, Cuiaba-
MT, Jodo Pessoa-PB, Teresina-Pl, Rio de Janeiro-RJ, Sdo Paulo-SP, Curitiba-PR,
and Florian6polis-SC.

Table 6 — Inconvenience on the Day of the Highest Energy Consumption (Profile 1).

Family Cities Inconvenience
I Belém-PA 118
1] Palmas-TO 112
11 Brasilia-DF 92
v Cuiaba-MT 92
V Jodo Pessoa-PB 100
VI Teresina-PlI 122

VII Rio de Janeiro-RJ 100
VIl S3o Paulo-SP 106
IX Curitiba-PR 144
X Florianopolis-SC 78

Table 7 — Inconvenience on the Day of the Lowest Energy Consumption (Profile 1).

Family Cities Inconvenience
I Belém-PA 89
Il Palmas-TO 87
1l Brasilia-DF 77
[\ Cuiaba-MT 101
V Joao Pessoa-PB 102

VI Teresina-PlI 93
VII Rio de Janeiro-RJ 68
VI Sao Paulo-SP 80
IX Curitiba-PR 54
X Florian6polis-SC 70

Another analysis was the calculation of the Trade-off solution, that is, the
ratio between each inconvenience unit caused to an end consumer and the reduction
attributed to it, resulting in the total decrease (in R$) for each inconvenience unit.
Figure 17 shows the simulation results of the Trade-off for the families living in Curitiba-
PR and Joao Pessoa-PB, who were the ones that had the highest inconvenience value
for the day of the highest and lowest consumption of electric power.
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Figure 17 — a) Trade-off on Day of the Highest Energy Consumption; b) Trade-off on Day of
the Lowest Energy Consumption (Profile 1).

Profile 2 — two adults

Table 8 and Figure 18 reflect the total electricity cost of each family for the

day of highest energy consumption. The family resided in the city of Jodo Pessoa-PB

presented the largest reduction in cost associated with the electricity consumption

compared to the other Brazilian families.

Table 8 — Cost of Electricity by Family on the Day of the Highest Energy Consumption

(Profile 2).
Family Cities Cost without | Cost with | Reduction
DR (R$) DR (R$) (%)
I Belém-PA 2.17 2.03 6.45
1l Palmas-TO 4.29 3.75 12.59
1l Brasilia-DF 4.18 3.60 13.88
v Cuiaba-MT 5.39 4.71 12.62
\Y Jodo Pessoa-PB 4.10 3.50 14.63
VI Teresina-PlI 5.02 4.87 2.99
VI Rio de Janeiro-RJ 5.06 4.51 10.87
VI Sao Paulo-SP 4.04 3.77 6.68
IX Curitiba-PR 5.44 4.99 8.27
X Florianépolis-SC 4.79 4.15 13.36
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In addition, experiments were performed considering the day of the lowest
energy consumption for Profile 2. Thus, the family living in the city of Beléem-PA
obtained the largest reduction in the total cost of electricity (from R$ 0.52 to R$ 0.41)
compared to other families in the cities of Palmas-TO, Brasilia-DF, Cuiaba-MT, Joao
Pessoa-PB, Teresina-Pl, Rio from January-RJ, Sao Paulo-SP, Curitiba-PR, and
Florianépolis-SC. Moreover, it should be pointed out that the family residing in the city
of Cuiaba-MT had the lowest reduction in the total cost of electricity due to the fact that
the refrigerator, freezer and air conditioners have non-flexible loads and represent 98%
of the energy consumption of the house. Table 9 and Figure 19 show the performance
of each family by the optimization process using the DR optimization model for the day
with the lowest energy consumption.

Table 9 — Cost of Electricity by Family on the Day of the Lowest Energy Consumption (Profile

1).

Family Cities Cost without | Cost with | Reduction
DR (R$) DR (R$) (%)
I Belém-PA 0.52 0.41 21.15
1l Palmas-TO 1.85 1.76 4.86
1] Brasilia-DF 1.38 1.28 7.25
v Cuiaba-MT 0.8524 0.8522 0.02
\Y Jodo Pessoa-PB 1.06 1.00 5.66
VI Teresina-Pl 1.59 1.58 0.63
VII Rio de Janeiro-RJ 0.74 0.69 6.76
VI Sao Paulo-SP 1.13 1.02 9.73
IX Curitiba-PR 1.24 1.14 8.06
X Florian6polis-SC 0.32 0.31 3.13

Cost [RS]
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Figure 19 — Cost of Electricity by Family on the Day of the Lowest Energy Consumption
(Profile 2).

Table 10 and Table 11 show the inconvenience level results for the end
consumers on the days of highest and lowest electricity consumption. The

inconvenience values show that the families living in Cuiaba-MT (inconvenience: 168)
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and Rio de Janeiro-RJ (inconvenience: 131) obtained the highest results for the

inconvenience level.

Table 10 — Inconvenience on the Day of the Highest Energy Consumption (Profile 2).

Table 11 — Inconvenience

Family Cities Inconvenience
| Belém-PA 144
1l Palmas-TO 158
1l Brasilia-DF 162
[\ Cuiaba-MT 168
\Y Joao Pessoa-PB 158
VI Teresina-Pl 129

VII Rio de Janeiro-RJ 152
VIII Sao Paulo-SP 152
IX Curitiba-PR 144
X Florianépolis-SC 132

on the Day of the Low

est Energy Consumption (Profile 2).

Family Cities Inconvenience
| Belém-PA 108
Il Palmas-TO 124
1] Brasilia-DF 110
[\ Cuiaba-MT 81
V Joao Pessoa-PB 105

VI Teresina-Pl 100
VII Rio de Janeiro-RJ 131
VI Sao Paulo-SP 111
IX Curitiba-PR 100
X Florianépolis-SC 70

Furthermore, based on these results, the Trade-off relationship between the

inconvenience and the minimization of the electricity cost (in R$) obtained in each

inconvenience unit was evaluated. Figure 20 gives the simulation results for the Trade-

off of families living in Cuiaba-MT and Joao Pessoa-PB that had the highest

inconvenience value for the days of the highest and lowest electricity consumption.
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Profile 3 — two adults with three children

The results show that the family living in Curitiba-PR had the highest values
related to cost minimization associated with the consumption of electric energy
compared to other families in the cities of Belém-PA, Palmas-TO, Brasilia-DF, Cuiaba-
MT, Jodo Pessoa-PB, Teresina-Pl, Rio de Janeiro-RJ, Sdo Paulo-SP, Curitiba-PR,
and Floriandpolis-SC. Table 12 and Figure 21 summarize the results for Profile 3.

Table 12 — Cost of Electricity by Family on the Day of the Highest Energy Consumption

(Profile 3).
Family Cities Cost without | Cost with | Reduction

DR (R$) DR (R$) (%)

I Belém-PA 8.40 8.00 4.76
Il Palmas-TO 8.02 7.50 6.48
1] Brasilia-DF 1.64 1.54 6.10
[\ Cuiaba-MT 4.41 413 6.35
V Jodo Pessoa-PB 7.90 7.70 2.53
VI Teresina-Pl 7.55 7.31 3.18
VI Rio de Janeiro-RJ 2.99 2.84 5.02
VI Sao Paulo-SP 8.10 8.08 0.25
IX Curitiba-PR 7.92 7.33 7.45
X Florian6polis-SC 8.41 8.32 1.07
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Figure 21 — Cost of Electricity by Family on the Day of the Highest Energy Consumption
(Profile 3).

Table 13 and Figure 22 displays a comparison of the total cost of electricity
for each family for the day with the least energy consumption. Thus, the family living in
Jodo Pessoa-PB had the greatest reduction in the cost related to the electricity
consumption compared to other families in the cities of Belém-PA, Palmas-TO,
Brasilia-DF, Cuiaba-MT, Teresina-PI, Rio de Janeiro-RJ, Sdo Paulo-SP, Curitiba-PR,
and Florianopolis-SC, decreasing from R$ 2.52 to R$ 1.48.
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Table 13 — Cost of Electricity by Family on the Day of the Lowest Energy Consumption

(Profile 3).
Family Cities Cost without | Cost with | Reduction
DR (R$) DR (R$) (%)
I Belém-PA 2.39 2.10 12.13
Il Palmas-TO 4.60 4.33 5.87
Il Brasilia-DF 1.49 1.43 4.03
[\ Cuiaba-MT 1.84 1.53 16.85
\Y Jodo Pessoa-PB 2.52 1.48 41.27
VI Teresina-PlI 4.72 4.66 1.27
Vil Rio de Janeiro-RJ 1.90 1.82 4.21
VI Sao Paulo-SP 2.36 2.12 10.17
IX Curitiba-PR 2.73 2.65 2.93
X Florianépolis-SC 2.18 1.93 11.47
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Figure 22 — Cost of Electricity by Family on the Day of the Lowest Energy Consumption
(Profile 3).

In addition, Table 14 and Table 15 show the results for the inconvenience
level for the end consumers about the use of their home appliances for the days of
highest and lowest consumption of electric energy. Thus, families living in Belém-PA
(inconvenience: 228) and Joao Pessoa-PB (inconvenience: 197) had the highest
inconvenience rates.

Table 14 — Inconvenience on the Day of the Highest Energy Consumption (Profile 3).

Family Cities Inconvenience
I Belém-PA 228
1] Palmas-TO 170
11 Brasilia-DF 214
v Cuiaba -MT 190
V Jodo Pessoa-PB 180

VI Teresina-Pl 176
VII Rio de Janeiro-RJ 210
VIl S3o Paulo-SP 162
IX Curitiba-PR 220
X Florianopolis-SC 178
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Table 15 — Inconvenience on the Day of the Lowest Energy Consumption (Profile 3).

Family Cities Inconvenience
I Belém-PA 102
Il Palmas-TO 193
1] Brasilia-DF 152
[\ Cuiaba-MT 170
V Joao Pessoa-PB 197

VI Teresina-PlI 139
VII Rio de Janeiro-RJ 165
VI Sao Paulo-SP 178
IX Curitiba-PR 154
X Florian6polis-SC 172

Another analysis was performed in order to verify, based on the results, the

Trade-off relationship between the inconvenience and the total cost of electricity (in

R$) for the days of highest and lowest energy consumption. Thus, Figure 23 shows

the results obtained for Trade-off of families (residents in Belém-PA and Joao Pessoa-

PB) who had the highest inconvenience values.
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Figure 23 — a) Trade-off on Day of the Highest Energy Consumption; b) Trade-off on Day of
the Lowest Energy Consumption (Profile 3)

4.2.2 Optimization Process by GA

The computational simulations were applied to 10 families, each with two

working adults and two teenagers. The families were resident in 10 Brazilian cities
(Belém-PA, Palmas-TO, Brasilia-DF, Cuiaba-MT, Jodo Pessoa-PB, Teresina-Pl, Rio
de Janeiro-RJ, Sao Paulo-SP, Curitiba-PR and Florianépolis-SC) located in the five

different regions of the country, respectively: North, Central West, Northeast,
Southeast and South.

These different regions present different climatic characteristics; for

example, in the South and Southeast regions, there are certain times of the year when

the temperatures are low, and at these times the residents do not use air conditioners
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with such frequency, while the North and Northeast regions have a subtropical climate
that is divided into dry and rainy periods, with high temperatures throughout the year.

Consequently, these residents use air conditioners much more frequently.

Thus, the families selected for the computational simulations have different
patterns of electric energy consumption. In addition, each family was considered to
have 29 appliances. Table 3 presents the residential appliances used in the
computational simulations. For validation purposes, the optimization model DR uses

the parameters in GA as shown in Table 16.

Table 16 — GA Parameters.

Parameter Value
Population size 500
Maximum number of iterations 1.000
Selection method Tournament (3)
Crossover method One-Point
Crossover probability 85%
Mutation method Binary
Mutation probability 1%

All these parameters used in the computational simulations involving the GA
were obtained through a control mapping with the possible configuration values and,
in this way, showed that this configuration could overcome the DR problem exemplified
in this experiment scenario. Furthermore, Table 2 displays other parameters used by

the GA technique in the computational simulations.
Simulation Results and Discussion for GA

The computational simulations included two versions of the DR proposed
model: a full one and a relaxed version called Proposed Model (WT). The proposed
model-WT used by the authors does not contemplate the particularities of operation of
the different categories of residential appliances (interruptible and deferrable (4;);
uninterruptible and deferrable (4,,); and, uninterruptible and non-deferrable (4,,;)), as
the full version of the proposed optimization model, presented in Section 3.2, does.
However, both were used to analyze the impact of the operating characteristics of the
different categories of residential appliances on reducing the cost of electricity as well
as the level of satisfaction and comfort of the end consumers with the optimized

programming for residential apparatuses. In addition, the optimization models
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proposed in (CONEJO; MORALES; BARINGO, 2010; LOGENTHIRAN; SRINIVASAN;
SHUN, 2012) were also used for comparison.

The impact of DR, as well as the application of the proposed DR
optimization model, was demonstrated through two aspects: the cost of electricity
associated with consumption; and, the level of satisfaction and comfort of the final
consumers. Table 17 and Figure 24 show a comparison of the cost of electricity of
each family in each city, according to the LPG tool, as well as the values obtained
through the GA optimization process using the formulations analyzed in this scenario.
The results of the computational simulations show a reduction in the cost of electricity

for each family with the inclusion of the DR program.

The models developed by the authors in (CONEJO; MORALES; BARINGO,
2010), (LOGENTHIRAN; SRINIVASAN; SHUN, 2012) and the Proposed Model (WT)
obtained the largest reductions in the cost of electricity in the city of Rio de Janeiro-RJ
from R$ 107.13 to R$ 62.07, R$ 73.54 and R$ 73.20, totaling a decrease of 42.06%,
31.35%, and 31.67%, respectively, in the final cost of electric energy. The DR
optimization model proposed in this study obtained in the city of Rio de Janeiro-RJ a
reduction in the cost of electricity from R$ 107.13 to R$ 99.44, which is a drop of 7.18%
in the final cost of electricity.

However, in addition to the reduction of electricity consumption, this
significant reduction of cost is only possible in the formulations developed by
(CONEJO; MORALES; BARINGO, 2010), (LOGENTHIRAN; SRINIVASAN; SHUN,
2012) and the Proposed Model (WT) because they do not consider the particularities
of the different categories of residential appliances, and therefore allow a greater
reduction of the cost of electricity to be achieved. Thus, Figure 24 presents a synthesis
of the electricity costs associated to the consumption of electric energy of each family
according to the LPG tool for the models created in (CONEJO; MORALES; BARINGO,
2010) and (LOGENTHIRAN; SRINIVASAN; SHUN, 2012) and the model presented in

this thesis.
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Another analysis was the evaluation of the impact of the inconvenience,
defined in Equation (13), which demonstrates how the change in the profile of using
residential devices can interfere with the satisfaction and comfort of the final
consumers. The results of the computational simulations show that, for example, in
Brasilia-DF, the model proposed in this study obtained a value of 62 for the level of
inconvenience while the Proposed Model (WT) version and the formulation presented
by the authors (LOGENTHIRAN; SRINIVASAN; SHUN, 2012) had values of 452 and
418, respectively. Table 18 gives a summary of all the values referring to the level of

the inconvenience of each family.

Table 18 shows that the proposed DR optimization model had lower
inconvenience values than the Proposed Model (WT) version and the model presented
by the authors (LOGENTHIRAN; SRINIVASAN; SHUN, 2012). That is, the model in
this study does not cause any significant level of dissatisfaction and discomfort to the

final consumers in the face of changing the use of the devices over a time horizon.

Table 18 — Inconvenience by Family.

Inconvenience
Family Cities (LOGENTHIRA_N; Proposed Proposed
SRINIVASAN; Model Model (WT)
SHUN, 2012)
I Belém-PA 429 66 440
Il Palmas-TO 435 73 438
1 Brasilia-DF 418 62 452
v Cuiaba-MT 422 70 440
\Y Jodo Pessoa-PB 418 78 440
VI Teresina-PlI 419 66 445
VII Rio de Janeiro-RJ 414 70 456
VI Sao Paulo-SP 410 64 447
IX Curitiba-PR 447 71 441
X Florianépolis-SC 426 71 444

The formulations applied by (LOGENTHIRAN; SRINIVASAN; SHUN, 2012)
and Proposed Model (WT), Figure 25, caused high levels of inconvenience as they did
not differentiate the residential appliance categories in their formulation, while the
model proposed in this paper considered the different particularities of the categories
of home appliances, and consequently managed to reach the very low level of
inconvenience. The inconvenience was not evaluated by the authors in (CONEJO,;
MORALES; BARINGO, 2010) because the structure of the formulation did not
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contemplate the load demand per device for each time interval, thus making such an
analysis impossible.
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Figure 25 — Level of Inconvenience by Family.
(VERAS et al., 2018c)

The results of the computational simulations show that the GA optimization
process using the model proposed in this work managed to effectively manage the
different categories of apparatuses in the ten residences. Thus, the proposed model is
able to reduce the cost associated with the consumption of electric energy and the
level of the inconvenience of the families when considering the preferences of the

consumers in relation to the use of the residential apparatuses.

Moreover, new computational simulations were performed considering the
day of highest and lowest electricity consumption in the year of 2016 for 30 families,
with different electric energy consumption profiles (Profile 1 — a single adult; Profile 2
— two adults, and Profile 3 — two adults with three children). The families were resident
in 10 Brazilian cities (Belém-PA, Palmas-TO, Brasilia-DF, Cuiaba-MT, Joao Pessoa-
PB, Teresina-PI, Rio de Janeiro-RJ, Sdo Paulo-SP, Curitiba-PR and Florian6polis-SC)
located in the five different regions of the country, respectively: North, Central West,
Northeast, Southeast and South. The total time horizon in this study is given as T = 24
h. Each time interval t means one hour and t € T such that: T={1 h, 2 h ... 24 h}, for

each family between 1 January and 31 December 2016.

Each profile had different numbers of home appliances: Profile 1 (290
appliances), Profile 2 (330 appliances) and Profile 3 (230 appliances), totaling 850
appliances for analysis. Table 3 shows the load profiles and the different categories of
the home appliances. In the computer simulations exemplified below, some

parameters were considered for each family as presented in Table 2. Other parameters
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shown in Table 16 were used to develop GA using the DR optimization model
contained in the EMC.

Profile 1 — a single adult

The results of the computational simulations indicate that the family living in Rio

de Janeiro compared to other families reduced the total cost of electricity from R$ 0.94

to R$ 0.88, providing the best results related to cost minimization associated with

energy consumption. Table 19 and Figure 26 summarize the results of the

computational simulations the day of high electric energy consumption in profile 1.

Table 19 — Cost of Electricity by Family on the Day of the Highest Energy Consumption

(Profile 1).
Famil Cities Cost Without Cost With Reduction

y DR (R$) DR (R$) (%)

| Belém-PA 2.26 2.19 3.10

Il Palmas-TO 1.20 1.18 1.67

1l Brasilia-DF 1.73 1.65 462

AV Cuiaba-MT 1.39 1.36 2.16

\Y Joao Pessoa-PB 1.74 1.68 3.45

VI Teresina-PI 1.13 1.11 1.77

VII Rio de Janeiro-RJ 0.94 0.88 6.38

VI S3o Paulo-SP 2.44 2.40 1.64

IX Curitiba-PR 2.43 2.41 0.82

X Florianépolis-SC 2.55 2.54 0.39
3 B

:5;
l | ‘ ‘ | | |
Belém Palmas Brasilia Cuiaba  Jodo lg’essoa Terelsina Rio de Janeiro Sdo Paulo  Curitiba Florianopolis

Figure 26 — Cost of Electricity by Family on the Day of the Highest Energy Consumption

(Profile 1).

In the computational simulation results, for the day of less energy

consumption, itis possible to observe that the family is living in the city of Joao Pessoa-

PB, compared to the other families, obtained the largest reduction in the cost
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associated with the electricity consumption (from R$ 0.61 to R$ 0.43). Table 20 and

Figure 27 summarize the total cost of electricity achieved by each household.

Table 20 — Cost of Electricity by Family on the Day of the Lowest Energy Consumption

(Profile 1).
Family Cities Witg::tt DR wﬁﬁSSR Reduction
(R$) (R$) (%)
I Belém-PA 0.76 0.75 1.32
Il Palmas-TO 0.92 0.89 3.26
1] Brasilia-DF 0.34 0.32 5.88
\Y Cuiaba-MT 0.40 0.37 7.50
V Joao Pessoa-PB 0.61 0.43 29.51
VI Teresina-PI 1.08 1.05 2.78
Vi Rio de Janeiro-RJ 0.35 0.34 2.86
VII Sao Paulo-SP 0.53 0.48 9.43
IX Curitiba-PR 0.19 0.17 10.53
X Floriano6polis-SC 0.32 0.31 3.13
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Figure 27 — Cost of Electricity by Family on the Day of the Lowest Energy Consumption
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In the inconvenience analysis, it is possible to realize that in the day of

higher and lower energy consumption, the families living in the cities of Floriandpolis-

SC and Curitiba-PR obtained the lowest values about the inconvenience level, 80 and

54 respectively. In Table 21 and Table 22, the inconvenience values obtained in the

computational simulations are exemplified for each family.

Table 21 — Inconvenience on the Day of the Highest Energy Consumption (Profile 1).

Family Cities Inconvenience
I Belém-PA 121
Il Palmas-TO 115
1l Brasilia-DF 93
[\ Cuiaba-MT 95
\Y Joao Pessoa-PB 100
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Table 22 — Inconvenience on the Day of the Lowest Energy Consumption (Profile 1).

VI Teresina-Pl 123
VI Rio de Janeiro-RJ 100
VIII S30 Paulo-SP 107
IX Curitiba-PR 144
X Florian6polis-SC 80

Family Cities Inconvenience
I Belém-PA 90
1l Palmas-TO 89
1l Brasilia-DF 79
v Cuiaba-MT 101
\Y Joao Pessoa-PB 102

VI Teresina-PlI 96
VII Rio de Janeiro-RJ 69
VI Sao Paulo-SP 81
IX Curitiba-PR 54
X Florianépolis-SC 73

Profile 2 — two adults

In this profile, it is clear that on the day of high energy consumption, the
family living in Palmas-TO, in comparison with the other families, obtained the largest
reduction in total electricity cost, from R$ 4.29 to R$ 3.93. Therefore, it reached the
best computational results among the analyzed families. Table 23 and Figure 28

display the results of computational simulations for each family.

Table 23 — Cost of Electricity by Family on the Day of the Highest Energy Consumption

(Profile 2).
. o . Cost 905t Reduction
Family Cities Without DR | With DR (%)
(R$) (R$)

I Belém-PA 217 2.11 2.76
Il Palmas-TO 4.29 3.93 8.39
1] Brasilia-DF 418 4.17 0.24
\Y Cuiaba-MT 5.39 5.04 6.49
V Joao Pessoa-PB 410 3.97 3.17
VI Teresina-PlI 5.02 4.93 1.79
VII Rio de Janeiro-RJ 5.06 5.05 0.20
VII Sao Paulo-SP 4.04 3.84 4.95
IX Curitiba-PR 5.44 5.04 7.35
X Florianopolis-SC 4.79 4.43 7.52
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Figure 28 — Cost of Electricity by Family on the Day of the Highest Energy Consumption

(Profile 2).

Table 24 and Figure 29 present the values related to the electricity cost

reduction by each city in the day of less energy consumption. It is worth mentioning

that the family living in Sdo Paulo-SP obtained the best minimization of the annual cost
in the electricity bill, from R$ 1.13 to R$ 1.02.

Cost [RS]

Table 24 — Cost of Electricity by Family on the Day of the Lowest Energy Consumption

(Profile 2).
. o . Cost 905t Reduction
Family Cities Without DR | With DR (%)
(R$) (R$)

I Belém-PA 0.75 0.52 1.32
Il Palmas-TO 1.85 1.77 4.32
1] Brasilia-DF 1.38 1.33 3.62
\Y Cuiaba-MT 0.85 0.84 1.18
V Joao Pessoa-PB 1.06 1.05 0.94
Vi Teresina-PI 1.59 1.55 2.52

VII Rio de Janeiro-RJ 0.74 0.71 4.05
VII Sao Paulo-SP 1.13 1.02 9.73
IX Curitiba-PR 1.24 1.23 0.81
X Floriano6polis-SC 0.32 0.31 3.13

1.5

—

0.

ot

Belém Palmas

Brasilia Cuiaba

Joao Pessoa  Teresina Rio de Janeiro Sao Paulo  Curitiba Florianopolis

I8 Actual CostBEGA

Figure 29 — Cost of Electricity by Family on the Day of the Lowest Energy Consumption

(Profile 2).
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Table 25 and Table 26 shows a comparison of the inconvenience level
values reached through the GA optimization process in the EMC using the DR model
presented in this work for each family/profile in each city. Thus, it is clear that the
families living in the cities of Teresina-Pl and Florian6polis-SC acquired the lowest
values for the inconvenience level, being 129 and 73 for the day of higher and lower

energy consumption, respectively.

Table 25 — Inconvenience on the Day of the Highest Energy Consumption (Profile 2).

Family Cities Inconvenience

| Belém-PA 146

Il Palmas-TO 161

1l Brasilia-DF 164
[\ Cuiaba-MT 170
\Y Joao Pessoa-PB 161
VI Teresina-Pl 129
VII Rio de Janeiro-RJ 152
VI Sao Paulo-SP 153
IX Curitiba-PR 146

X Florianépolis-SC 135

Table 26 — Inconvenience on the Day of the Lowest Energy Consumption (Profile 2).
Family Cities Inconvenience

| Belém-PA 110

Il Palmas-TO 124

1] Brasilia-DF 112
[\ Cuiaba-MT 83
\Y Joao Pessoa-PB 107
VI Teresina-PlI 101
VII Rio de Janeiro-RJ 134
VI Sao Paulo-SP 114
IX Curitiba-PR 100

X Florianépolis-SC 73

Profile 3 — two adults with three children

The simulations result for the day of high consumption show that the family
living in the city of Rio de Janeiro-RJ, compared to other families in the cities of Belém-
PA, Palmas-TO, Brasilia-DF, Cuiaba-MT, Jodo Pessoa-PB, Teresina-Pl, Sdo Paulo-
SP, Curitiba-PR, and Florianépolis-SC, reduced the total cost of electricity from R$
2.99 to R$ 2.84. Therefore, the family from Rio de Janeiro-RJ reached the highest
values related to cost minimization associated with the electric energy consumption.

Table 27 and Figure 30 summarize the results achieved in computational simulations.
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Table 27 — Cost of Electricity by Family on the Day of the Highest Energy Consumption

(Profile 3).
Cost Cost Reduction
Family Cities Without DR | With DR (%)
(R$) (R$) °
| Belém-PA 8.40 8.38 0.24
Il Palmas-TO 8.02 7.94 1.00
1l Brasilia-DF 1.64 1.58 3.66
v Cuiaba-MT 4.41 4.29 2.72
V Jodo Pessoa-PB 7.90 7.84 0.76
VI Teresina-PI 7.55 7.48 0.93
VI Rio de Janeiro-RJ 2.99 2.84 5.02
VII Sao Paulo-SP 8.10 8.09 0.12
IX Curitiba-PR 7.92 7.36 7.07
X Florianépolis-SC 8.41 8.39 0.24
8 |- |
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Figure 30 — Cost of Electricity by Family on the Day of the Highest Energy Consumption
(Profile 3).

Table 28 and Figure 31 show a summary of the total cost of electricity per
family in the day of less electric energy consumption. Thus, the family living in
Florianépolis-SC obtained the highest minimization of the cost related to the electricity
consumption, from R$ 2.18 to R$ 1.99.

Table 28 — Cost of Electricity by Family on the Day of the Lowest Energy Consumption

(Profile 3).
. i . Cost 9°St Reduction
Family Cities Without DR | With DR (%)
(R$) (R$)

I Belém-PA 2.39 2.37 0.84

Il Palmas-TO 4.60 4.34 5.65

1] Brasilia-DF 1.49 1.46 2.01
v Cuiaba-MT 1.84 1.77 3.80

\Y Jodo Pessoa-PB 2.52 2.35 6.75
Vi Teresina-PI 4.72 4.66 1.27
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VII Rio de Janeiro-RJ 1.90 1.89 0.53
Vi Sao Paulo-SP 2.36 2.33 1.27
IX Curitiba-PR 2.73 2.71 0.73
X Florianépolis-SC 2.18 1.99 8.72

w =
T
L L

Cost [R$]

[}

L. o 0wl
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Figure 31 — Cost of Electricity by Family on the Day of the Lowest Energy Consumption
(Profile 3).

In the inconvenience analysis of the days of higher and lower electric energy
consumption, families living in Sdo Paulo-SP and Belém-PA acquired the highest
values for the inconvenience level, a total of 163 and 104, respectively. Table 29 and
Table 30 summarizes the results achieved in computational simulations for the

inconvenience level on days of higher and lower energy consumption.

Table 29 — Inconvenience on the Day of the Highest Energy Consumption (Profile 3).

Family Cities Inconvenience
I Belém-PA 228
Il Palmas-TO 170
11 Brasilia-DF 214
\Y% Cuiaba-MT 191
V Jodo Pessoa-PB 181
VI Teresina-PI 179
VII Rio de Janeiro-RJ 213
VI Séo Paulo-SP 163
IX Curitiba-PR 221
X Florianépolis-SC 180
Table 30 — Inconvenience on the Day of the Lowest Energy Consumption (Profile 3).
Family Cities Inconvenience
I Belém-PA 104
Il Palmas-TO 194
11 Brasilia-DF 153
IV Cuiaba-MT 170
V Jodo Pessoa-PB 197
VI Teresina-PI 139
Vil Rio de Janeiro-RJ 165
VI Séo Paulo-SP 179
IX Curitiba-PR 155
X Florianépolis-SC 175
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4.2.3 Optimization Process by PSO

The model presented in Section 3.2 was solved computationally by the PSO
optimization technique. The computational simulations consider the day of highest and
lowest electric energy consumption between January 15t and December 315, 2016, for
thirty families with different profiles of electric energy consumption (Profile 1 — a single
adult; Profile 2 — two adults; and Profile 3 — two adults with three children). The families
live in 10 Brazilian cities (Belém-PA, Palmas-TO, Brasilia-DF, Cuiaba-MT, Joao
Pessoa-PB, Teresina-Pl, Rio de Janeiro-RJ, Sao Paulo-SP, Curitiba-PR and
Florian6polis-SC) located in the five different regions of the country, respectively:
North, Central West, Northeast, Southeast and South.

Also, each profile had different numbers of home appliances: Profile 1 (290
appliances), Profile 2 (330 appliances) and Profile 3 (230 appliances), totalling 850
appliances for analysis. Table 3 shows the load profiles and the different categories of
home appliances. Furthermore, the total time horizon in this study is given as T=24h.
Each time interval t means one hour and teT such that: T={1h,2h...24h}. In the
experiments, some parameters of the optimization process that schedules the loads in
the residential scope (shown in Table 2) were considered for each family. Also, to solve
the DR optimization model contained in the EMC through the PSO computationally,
some adjustments must be made, using new parameters for the optimization technique
as described in Table 31.

Table 31 — PSO Parameters.

Parameter Value
Population Size 100
Maximum Number of Iterations 500
Particle Weight (Maximum) 0.9
Particle Weight (Minimum) 0.4
Acceleration Factors (c1) 2
Acceleration Factors (c2) 2
Initial Velocity 10% of position

Under these circumstances, an analysis of the results is shown in the

experiments for different electricity consumption profiles, as follows.
Profile 1 — a single adult

Table 32 and Figure 32 present the results for the computational simulations
of the minimization of the cost associated with the electric energy consumption by each

family. The family living in Sdo Paulo-SP had the greatest total cost reduction of
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electricity after the optimization process through PSO using the DR optimization model,
from R$ 2.44 to R$ 2.40.

Table 32 — Cost of Electricity by Family on the Day of the Highest Energy Consumption

(Profile 1).
Family Cities Cost without | Cost with DR | Reduction
DR (R$) (R$) (%)
I Belém-PA 2.26 2.20 2.65
Il Palmas-TO 1.20 1.18 3.69
1] Brasilia-DF 1.73 1.69 2.86
v Cuiaba-MT 1.39 1.37 1.67
\Y Jodo Pessoa-PB 1.74 1.71 443
VI Teresina-PlI 1.13 1.09 0.25
Vi Rio de Janeiro-RJ 0.94 0.88 2.31
VI Sao Paulo-SP 2.44 2.40 10.53
IX Curitiba-PR 2.43 2.35 1.83
X Florianépolis-SC 2.55 2.55 0.00
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Figure 32 — Cost of Electricity by Family on the Day of the Highest Energy Consumption
(Profile 1).

Table 33 and Figure 33 summarize all the values by each family related to
the cost minimization associated with the electricity consumption obtained in the
computational simulations through PSO using the DR optimization model presented in
Chapter 3. This clearly shows a total cost reduction of electricity for all the families and
the family, which lives in Brasilia-DF, had the greatest reduction (from R$ 0.34 to R$
0.28).
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Table 33 — Cost of Electricity by Family on the Day of the Lowest Energy Consumption

(Profile 1).
. . . Cost (.:OSt Reduction
Family Cities Without DR | With DR o
(R$) (R$) (%)
I Belém-PA 0.76 0.74 2.63
I Palmas-TO 0.92 0.89 3.26
1] Brasilia-DF 0.34 0.28 17.65
\Y Cuiaba-MT 0.40 0.34 15.00
\% Joao Pessoa-PB 0.61 0.56 8.20
Vi Teresina-PlI 1.08 1.01 6.48
VII Rio de Janeiro-RJ 0.35 0.31 11.43
VII Sao Paulo-SP 0.53 0.52 1.89
IX Curitiba-PR 0.19 0.18 5.26
X Florian6polis-SC 0.32 0.30 6.25
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Figure 33 — Cost of Electricity by Family on the Day of the Lowest Energy Consumption
(Profile 1).

Additionally, the inconvenience level for the day of the highest and lowest
energy consumption for each family was calculated. The greatest inconvenience value
found for the day of the highest and lowest electric energy consumption was 154 and
108 for the families located in the cities of Curitiba-PR and Jodao Pessoa-PB,
respectively.

Table 34 and Table 35 present a summary of the inconvenience simulation
results for each family living in Belém-PA, Palmas-TO, Brasilia-DF, Cuiaba-MT, Joao
Pessoa-PB, Teresina-Pl, Rio de Janeiro- RJ, Sado Paulo-SP, Curitiba-PR, and

Florian6polis-SC.

Table 34 — Inconvenience on the Day of the Highest Energy Consumption (Profile 1).

Family Cities Inconvenience
I Belém-PA 127
Il Palmas-TO 120
11 Brasilia-DF 98




96

Table 35 — Inconvenience

[\ Cuiaba-MT 103
\Y Joao Pessoa-PB 110
VI Teresina-PlI 132
VII Rio de Janeiro-RJ 107
VI Sao Paulo-SP 112
IX Curitiba-PR 154
X Florianépolis-SC 84

on the Day of the Low

est Energy Consumption (Profile 1).

Family Cities Inconvenience
| Belém-PA 98
Il Palmas-TO 92
1l Brasilia-DF 85
[\ Cuiaba-MT 107
\Y Joao Pessoa-PB 108

VI Teresina-PlI 97
VII Rio de Janeiro-RJ 77
VI Sao Paulo-SP 85
IX Curitiba-PR 65
X Florianépolis-SC 75

Profile 2 — two adults

Table 36 and Figure 34 display the results for the total electricity cost of
each family for the day with the highest electricity consumption. The family living in
Brasilia-DF presented the highest values related to the minimization of costs
associated with energy consumption in comparison to the other families in Belém-PA,
Palmas-TO, Cuiaba-MT, Joao Pessoa-PB, Teresina-Pl, Rio de Janeiro-RJ, Sdo Paulo-
SP, Curitiba-PR, and Florianépolis-SC, decreasing from R$ 4.18 to R$ 3.74.

Table 36 — Cost of Electricity by Family on the Day of the Highest Energy Consumption

(Profile 2).
. o . Cost 9°St Reduction
Family Cities Without DR | With DR o
(R$) (R$) (%)
I Belém-PA 217 2.09 3.69
Il Palmas-TO 4.29 410 4.43
1] Brasilia-DF 418 3.74 10.53
\Y Cuiaba-MT 5.39 5.15 4.45
\% Jodo Pessoa-PB 410 3.92 4.39
Vi Teresina-PlI 5.02 4.92 1.99
VI Rio de Janeiro-RJ 5.06 4.84 4.35
VII Sao Paulo-SP 4.04 3.86 4.46
IX Curitiba-PR 5.44 5.02 7.72
X Florian6polis-SC 479 4.37 8.77
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In the computational simulations involving the day of the lowest energy

consumption, the family living in Rio de Janeiro-RJ had the largest reduction in the

total cost of electricity compared to the other families in the cities of Beléem-PA, Palmas-
TO, Brasilia- DF, Cuiaba-MT, Joao Pessoa-PB, Teresina-Pl, Sdo Paulo-SP, Curitiba-
PR and Florianépolis-SC, decreasing from R$ 0.74 to R$ 0.69. Table 37 and Figure
35 show the performance of the optimization process using the PSO for each family.

Table 37 — Cost of Electricity by Family on the Day of the Lowest Energy Consumption

(Profile 2).
. i . Cost 9°St Reduction
Family Cities Without DR | With DR (%)
(R$) (R$)

I Belém-PA 0.52 0.52 0.00
Il Palmas-TO 1.85 1.82 1.62
[ Brasilia-DF 1.38 1.37 0.72
\Y Cuiaba-MT 0.85 0.84 1.18
Vv Jodo Pessoa-PB 1.06 1.04 1.89
Vi Teresina-PlI 1.59 1.59 0.00
VI Rio de Janeiro-RJ 0.74 0.69 6.76
VII Sao Paulo-SP 1.13 1.07 5.31
IX Curitiba-PR 1.24 1.22 1.61
X Florian6polis-SC 0.32 0.31 3.13




98

Cost [RS]

1.5

—_
T

=
3

A

Belém Palmas Brasilia

Cuiaba  Jodo Pessoa  Teresina Rio de Janeiro Sdo Paulo  Curitiba Florianopolis

‘ I8 Actual CostBBPSO ‘

Figure 35 — Cost of Electricity by Family on the Day of the Lowest Energy Consumption
(Profile 2).

Table 38 and Table 39 displays the results for the inconvenience level of

the end consumers on the days of the highest and lowest electricity consumption. The
inconvenience values show that the families living in Cuiaba-MT (inconvenience: 174)
and Rio de Janeiro-RJ (inconvenience: 140) obtained the best results for the

inconvenience level.

Table 38 — Inconvenience on the Day of the Highest Energy Consumption (Profile 2).

Table 39 — Inconvenience on the Day of the Lowest Energy Consumption (Profile 2).

Family Cities Inconvenience
| Belém-PA 153
1] Palmas-TO 162
1 Brasilia-DF 167
v Cuiaba-MT 174
V Jodo Pessoa-PB 165
VI Teresina-PI 138

VI Rio de Janeiro-RJ 157
VI Sao Paulo-SP 156
IX Curitiba-PR 156
X Florian6polis-SC 139

Family Cities Inconvenience
I Belém-PA 120
Il Palmas-TO 130
1] Brasilia-DF 114
[\ Cuiaba-MT 90
V Joao Pessoa-PB 115

VI Teresina-PlI 109
VII Rio de Janeiro-RJ 140
VI Sao Paulo-SP 123
IX Curitiba-PR 105
X Florian6polis-SC 76
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Profile 3 — two adults with three children

The results show that the family living in Curitiba-PR had the highest cost
minimization associated with the consumption of electric energy compared to the other
families in the cities of Belém-PA, Palmas-TO, Brasilia-DF, Cuiaba-MT, Jodo Pessoa-
PB, Teresina-Pl, Rio de Janeiro-RJ, Sao Paulo-SP, Curitiba-PR and Florianépolis-SC.
Table 40 and Figure 36 show a summary of the results for Profile 3. These results
show that the EMC applying the PSO technique using the DR optimization model can

reduce the cost associated with the electric energy consumption for all the families.

Table 40 — Cost of Electricity by Family on the Day of the Highest Energy Consumption

(Profile 3).
Cost Cost Reduction
Family Cities Without DR | with DR (%)
(R$) (R$) °

I Belém-PA 8.40 8.16 2.86

Il Palmas-TO 8.02 8.00 0.25

1 Brasilia-DF 1.64 1.61 1.83

v Cuiaba-MT 4.41 429 2.72

\% Jodo Pessoa-PB 7.90 7.89 0.13

VI Teresina-PlI 7.55 7.52 0.40

VI Rio de Janeiro-RJ 2.99 2.90 3.01

VI Sao Paulo-SP 8.10 8.09 0.12

IX Curitiba-PR 7.92 7.62 3.79

X Florian6polis-SC 8.41 8.32 1.07
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Figure 36 — Cost of Electricity by Family on the Day of the Highest Energy Consumption
(Profile 3).

Table 41 and Figure 37 show a comparison of the results by EMC using the
PSO to solve the DR optimization model in order to minimize the cost associated with
the consumption of electric energy of each family on the day of lowest energy
consumption. The family living in Cuiaba-MT obtained the greatest reduction in the

cost associated to the electric energy consumption, when compared to the other
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families in the cities of Belém-PA, Palmas-TO, Brasilia-DF, Teresina-Pl, Rio de
Janeiro-RJ, Sao Paulo-SP, Curitiba-PR, and Florianépolis-SC, from R$ 1.84 to R$
1.61.

Table 41 — Cost of Electricity by Family on the Day of the Lowest Energy Consumption

(Profile 3).
. i . Cost 905t Reduction
Family Cities Without DR | With DR (%)
(R$) (R$)
I Belém-PA 2.39 2.1 11.72
Il Palmas-TO 4.60 4.36 5.22
1] Brasilia-DF 1.49 1.46 2.01
\Y Cuiaba-MT 1.84 1.61 12.50
\Y Jo&o Pessoa-PB 2.52 2.47 1.98
VI Teresina-PlI 472 4.66 1.27
il Rio de Janeiro-RJ 1.90 1.87 1.58
VI Sao Paulo-SP 2.36 212 10.17
IX Curitiba-PR 2.73 2.71 0.73
X Florianoépolis-SC 2.18 2.07 5.05
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Figure 37 — Cost of Electricity by Family on the Day of the Lowest Energy Consumption
(Profile 3).

Table 42 and Table 43 displays the results for the inconvenience level of the end
consumers for the use of their home appliances on the days of the highest and lowest electric
energy consumption. Thus, families living in Belém-PA (inconvenience: 232) and Palmas-TO

(inconvenience: 203) had the worst rates of inconvenience.

Table 42 — Inconvenience on the Day of the Highest Energy Consumption (Profile 3).

Family Cities Inconvenience
I Belém-PA 232
Il Palmas-TO 177
11 Brasilia-DF 219
[\ Cuiaba-MT 199
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V Joao Pessoa-PB 192
VI Teresina-PlI 188
VII Rio de Janeiro-RJ 216
VI S3ao Paulo-SP 167
IX Curitiba-PR 230
X Florian6polis-SC 183

Table 43 — Inconvenience on the Day of the Lowest Energy Consumption (Profile 3).

Family Cities Inconvenience
I Belém-PA 112
1] Palmas-TO 203
11 Brasilia-DF 162
v Cuiaba-MT 176
\Y Jodo Pessoa-PB 202
VI Teresina-Pl 148

VII Rio de Janeiro-RJ 170
VIl S3o Paulo-SP 189
IX Curitiba-PR 158
X Florianépolis-SC 184

Also, a comparative analysis was verified the EMC efficiency in the load
scheduling process using the GA, PSO and LINGO optimization techniques (Appendix
B) to minimize the cost related to the electric energy consumption of households in
each city. Figure 38 to Figure 43, Table 44 and Table 45, provide a summary of all the
results in the optimization process involving load scheduling in the residents on the
highest and lowest energy consumption days in the year 2016 using GA, PSO and
LINGO.

)
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Figure 38 — Profile 1: Comparison Between Actual Cost, GA, PSO and LINGO: Cost with DR
on the Highest Electricity Consumption Day
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Figure 39 — Profile 1: Comparison Between Actual Cost, GA, PSO, and LINGO: Cost with DR
on the Lowest Electricity Consumption Day
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Figure 40 — Profile 2: Comparison Between Actual Cost, GA, PSO and LINGO: Cost with DR
on the Highest Electricity Consumption Day

1.5}

Cost [RS]

0.5

Il

Belém

T
Palmas

Brasilia Cuiaba

.

Teresina Rio de Janeiro Sao Paulo  Curitiba Florianopolis

Joao Pessoa

I8 Actual Cost IRGA
lopso laLINCO

Figure 41 — Profile 2: Comparison Between Actual Cost, GA, PSO, and LINGO: Cost with DR
on the Lowest Electricity Consumption Day
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Figure 42 — Profile 3: Comparison Between Actual Cost, GA, PSO and LINGO: Cost with DR
on the Highest Electricity Consumption Day
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Figure 43 — Profile 3: Comparison Between Actual Cost, GA, PSO, and LINGO: Cost with DR
on the Lowest Electricity Consumption Day

Table 44 and Table 45 illustrate that EMC using the LINGO, GA and PSO
optimization techniques manages to minimize the total cost of electricity for Profiles 1,
2 and 3 on the highest and lowest energy consumption days, and the reductions were
10.64%, 14.63%, and 7.45%, as well as 47.54%, 21.15% and 41.27%, respectively

per profile.
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4.3 Experimental Scenario 2 (Multi-Objective)

In this scenario, Equation (13) of the DR optimization model (Section 3.2)
becomes an objective function in order to minimize the inconvenience level for the
optimized scheduling of the home appliances for the end consumers. Thus, the DR
optimization model has two objective functions (f; and f2) that are responsible for
minimizing the cost associated with the electric energy consumption as well as
minimizing the inconvenience level for the end consumers, respectively. Therefore, in
this section, the results of the computational simulations obtained through the EMC
using the NSGA-II optimization technique are presented in order to solve the DR multi-

objective optimization problem described in Section 3.2.
4.3.1 Optimization Process by NSGA-II

Three (03) different profiles of electric power consumption were used for the
simulations (Profile 1 — a single adult; Profile 2 — two adults; and Profile 3 — two adults
with three children). These profiles were provided by the LPG (PFLUGRADT, 2016)
tool for 15 Brazilian families living in the cities of Belém-PA, Teresina-Pl, Cuiaba-MT,
Florianépolis-SC, and Sao Paulo-SP, with 3 family per city, located in the North,
Northeast, Midwest, South and Southeast regions of Brazil, respectively. Also, the
profile had different numbers of home appliances: Profile 1 (23 appliances), Profile 2
(29 appliances) and Profile 3 (33 appliances), totalling 425 appliances for analysis.
Table 46 shows the load profiles and the different categories of the home appliances.

Table 46 — Profiles and Categories of Home Appliances.

Profile Categories Home Appliances
Light 100 W, 20 W and 60 W, SAT-Receiver, TV, Playstation, Laptop,
A, CD/DVD Player, Computer, DVB-T Receiver, Router, Computer
Screen.
1 4 Wine Cellar, Steam Iron, Food Multiprocessor, Microwave, Washing
n Machine, Electric Kettle, Nespresso Coffee Machine.
A Refrigerator, Air Conditioning, Electric Heater, Freezer.
Light 100 W, 20 W, and 60 W, SAT-Receiver, TV, Cell Phone
A, Charging, Microsoft Xbox, Laptop, CD/DVD Player, Computer, DVB-T
Receiver, Router, Computer Screen, Kitchen Radio.
2 4 Wine Cellar, Steam Iron, Hair Dryer, Electric Stove, Microwave, Juicer,
11

Washing Machine, Toaster, Electric Kettle, Nespresso Coffee Machine.

A Refrigerator, Air Conditioning, Electric Heater, Freezer, Dryer.

Light 100 W, 20 W, and 60 W, SAT-Receiver, TV, Cell Phone
Charging, Playstation, Microsoft Xbox, Laptop, CD/DVD Player,
Computer, Home Cinema System, DVB-T Receiver, Router, Computer
Screen, Kitchen Radio.
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Wine Cellar, Steam Iron, Hair Dryer, Electric Razor, Electric Stove,
Ay Electronic Hometrainer, Microwave, Juicer, Washing Machine, Toaster,
Electric Kettle, Nespresso Coffee Machine.

A Refrigerator, Air Conditioning, Electric Heater, Freezer, Dryer.

The total time horizon in this study is given as T = 24h. Each time interval t
means one hour and t € T such that: T = {1h,2h ...24h} for each family between
January 15t and December 31st, 2016. Other data used in the evaluations were the
dynamic price of electricity. The multi-objective DR model used here allows electricity
prices from studies that use forecasts or price history values to be used. Price
information is an input parameter, and so the model is not restricted to the prices of
any specific country or location. In such cases, RTP is considered to be the
incorporated tariff. Figure 44 was created by the authors to show the price per unit
power consumption at each sub-interval for an energy-intensive day (December 24t

2016) of Profile 2 in Palmas-TO.

0.25

0.15| *

Price (US$/kWh)

L L L L L L L L
1234567 8 9101112131415161718 192021222324
Sub-interval

0.1

Figure 44 — Price Per Unit Power Consumption.
(VERAS et al., 2018a)

The DR model used the parameters in NSGA-Il in Table 47 for validation
purposes. The values of the parameter were obtained via simulations with a control
map, which is a series of tests with different configurations applied to the NSGA-II. The
NSGA-II indicates the best configuration to overcome the multi-objective problem.

Other parameters were used as shown in Table 2.
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Table 47 — NSGA-Il Parameters.

Parameter Value
Population size 500
Maximum number of iterations 1000
Selection method Tournament (3)
Crossover method Single Point
Crossover probability 85%
Mutation method Bit Flip
Mutation probability 1%

The values first used for these parameters were based on a definition
required by the consumers and the utility. Brazil has different and distinct climatic
characteristics; for example, in the south and southeast regions, certain periods of the
year have relatively low temperatures and therefore air conditioners are not used with
much frequency; on the other hand, the north and northeast of the country are
subtropical, and the climate is divided into dry and rainy periods but with high
temperatures all year round. Consequently, air conditioners are used much more
frequently. Each city has its distinct mdc value due to the different locations within
Brazil and the families in this study have different energy consumption profiles.
Consequently, these differences affect the final power consumption of each family

differently.

The results obtained in the computational simulations regarding the impact
of HEMS using the multi-objective optimization model of DR for different profiles of
electric energy consumption considers 02 aspects: (1) the cost of electricity and (2) the
level of satisfaction/comfort of end consumers. In the following is a breakdown of the
results for these three different profiles. The analysis showed that the best solution is
the cost minimization objective (f7, defined by Equation (12) in Section 3.2), indicated
by the letter A in Figure 45, which presents the Optimal Pareto Frontier reached with

the experiments.
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Figure 45 — Optimal Pareto Frontier.
(VERAS et al., 2018a)

Table 48 and Figure 46 gives a summary of the electricity cost for each

family in Profile 1. Thus, the family residing in Teresina-Pl managed to obtain a greater

reduction compared to the other families, with the cost dropping from R$ 200.42 to R$

183.22.
Table 48 — Reduction of Electricity Costs per Family in Profile 1 for Each City.
Family Cities Without DR With Reduction Reduction

(R$) DR (R$) (%) (R$)
I Belém-PA 175.95 167.03 5.07 8.92
Il Cuiaba-MT 175.62 162.59 7.42 13.03
1l Florianépolis-SC 171.14 159.04 7.07 12.10
v Séo Paulo-SP 174.24 163.46 6.19 10.79
\Y Teresina-PI 200.42 183.22 8.58 17.20
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Cuiabéa

Florianépolis

‘ I8 Actual CostBENSGA-IT ‘

Sao Paulo

Teresina

Figure 46 — Reduction of Electricity Costs Per Family in Profile 1 for Each City.
(VERAS et al., 2018a)

The Table 49 summarizes the results for the inconvenience and Trade-off.

The inconvenience and trade-off values show that the family residing in Teresina-PlI
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had the highest Trade-off value which was 0.12, and this is equivalent to a R$ 0.12

reduction per unit of inconvenience caused to the end consumer.

Table 49 — Inconvenience and Trade-off analysis in Profile 1.

Family Cities Inconvenience Caused | Trade-off
I Belém-PA 42 0.06
Il Cuiaba-MT 43 0.09
Il Floriandpolis-SC 39 0.09
I\ Séo Paulo-SP 40 0.08
V Teresina-PI 41 0.12

Profile 2 — two adults

Table 50 and Figure 47 present the results obtained for the cost of electric

energy consumption for each family, considering the usage profiles of their home

appliances. The results were acquired using LPG (Cost Without DR (R$)) and the

technique of optimization (Cost with DR (R$)) using the DR model presented in this

work. Thus, the family living in Teresina-Pl compared to the other families in the other
cities (Belém-PA, Cuiaba-MT, Floriandpolis-SC and Sao Paulo-SP) obtained the
largest cost reduction: dropping from R$ 346.44 to R$ 316.47.

Table 50 — Reduction of Electricity Costs per Family in Profile 2 for Each City.

Family Cities Without DR With Reduction Reduction

(R$) DR (R$) (%) (R$)

I Belém-PA 321.24 304.98 5.06 16.26

Il Cuiaba-MT 341.09 315.64 7.46 25.45

1l Florianépolis-SC 294.62 273.79 7.07 20.83

I\ Sao Paulo-SP 310.34 290.75 6.31 19.59

V Teresina-PI 346.44 316.47 8.65 29.97
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Figure 47 — Reduction of Electricity Costs Per Family in Profile 2 for Each City
(VERAS et al., 2018a)

Based on the results obtained, the Trade-off solution was calculated, that

is, the relation between each unit of inconvenience caused to an end consumer and

the reduction attributed to it, which results in the total reduction (in R$) obtained with
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each unit of inconvenience caused. Thus, the highest Trade-off value found was 0.40
for the family located in Teresina-PI, which is equivalent to a reduction of R$ 0.40 per
unit of inconvenience caused to the end consumer. Table 51 shows a summary of the
results for the inconvenience and Trade-off simulations for each family resident in
Belém-PA, Cuiaba-MT, Florianépolis-SC, Sao Paulo-SP and Teresina-PI.

Table 51 — Inconvenience Analysis and Trade-off in Profile 2.

Family Cities Inconvenience Caused | Trade-off
I Beléem-PA 72 0.23
Il Cuiaba-MT 76 0.33
1] Florianépolis-SC 70 0.30
IV Séo Paulo-SP 73 0.27
\ Teresina-PI 75 0.40

Profile 3 — two adults with three Children

The results show that the family living in Teresina-Pl reduced the total
electricity cost from R$ 874.43 to R$ 799.14. Thus, the family living in Teresina-Pl had
the highest values related to cost minimization associated with the consumption of
electric energy compared to other families in the cities of Belém-PA, Cuiaba-MT,
Florian6polis-SC and Sao Paulo-SP. Table 52 and Figure 48 shows a summary of the

results achieved for Profile 3.

Table 52 — Reduction of Electricity Costs per Family in Profile 3 for Each City.
Without DR With Reduction Reduction

Family Cities (R$) DR (R$) (%) (R$)
I Belém-PA 756.85 718.40 5.08 38.45
Il Cuiaba-MT 799.98 740.14 7.48 59.84
1l Florianépolis-SC 697.30 647.09 7.20 50.20
v Séo Paulo-SP 726.01 679.76 6.37 46.25
V Teresina-PI 874.43 799.14 8.61 75.29
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Figure 48 — Reduction of Electricity Costs Per Family in Profile 3 for Each City.
(VERAS et al., 2018a)
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The inconvenience and Trade-off analysis show that the family resident in
Teresina-Pl obtained the highest Trade-off value with a total of 0.60, which is
equivalent to R$ 0.60 reduction per unit of inconvenience caused to the end consumer.
Table 53 shows a summary of the results obtained in the study for the inconvenience

and the Trade-off for the families in their respective cities.

Table 53 — Inconvenience and Trade-off Analysis in Profile 3.

Family Cities Inconvenience Caused Trade-off
[ Belém-PA 125 0.31
Il Cuiaba-MT 127 0.47
1l Florianopolis-SC 123 0.41
\Y S&o Paulo-SP 124 0.37
V Teresina-PI 126 0.60

4.3.1.1 Statistical Analysis

Also, the results from the experiments with scheduling for the home
appliances were analyzed by three performance metrics: Diversity, Coverage, and
Hypervolume. Diversity (SCHOTT; OH, 1995) measures the number of different
solutions given by an algorithm in a search space between extreme solutions
(maximum/minimum solutions of each objective function). Thus, a great number of
solutions found in the search space means there are a great number of options
available for decision-making.

The Coverage (metric C) is used to evaluate the optimal approach capability
of the solutions, which is the (theoretical) distance between the current Pareto Frontier
and the theoretical optimal Pareto Frontier. Thus, based on its theoretical properties
(ZITZLER; THIELE, 1999), coverage ensures a space of solutions closer to the
theoretical optimum to solve the DR problem.

The Hypervolume (HV) is a performance metric that calculates the volume
of the objective space among the set of solutions found and a reference point; here,
the reference point was the nadir point, which is the vector whose elements are the
worst values of each criterion of the multi-objective problem (LU; ANDERSON-COOK,
2013; ZITZLER, E.; BROCKHOFF, D.; THIELE, 2007). The higher the HV value is, the
better the convergence, extension, and uniformity (ZITZLER; THIELE, 1999).

Diversity

The spacing metric (SCHOTT; OH, 1995) was used to calculate the
Diversity, which is given by s:
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s= |— Z(&—di)z 1)

n—1

where d; = min; XM {|fi0) —fl (0|},ij=1,2,3,..,ni#j. d represents the
average values of d;, M is the number of objectives of the problem and n is the number

of solutions.

The closer the value of s is to zero, the greater the similarity between the
solutions will be, within the analyzed set. Thus, there will be a lower diversity of
solutions (SCHOTT; OH, 1995).

Coverage

The coverage ratio for two sets of solutions is compared by the metric C.
The number of points in set B dominated by set A over the total number of points in set

B is represented by C(4, B). Equation (22) demonstrates metric C:

| {x € B|3y € A: y dominates x} |
C(4,B) = B (22)

If the value C(4, B) = 1, it means that all points in B are dominated by A or
equal to the points contained in A. In contrast, if C(4, B) = 0, it indicates that none of
the points in B are dominated by the set A. Thus, it should be noted that C(4, B) and
C(B,A) should be considered because C(A4,B) # 1 —C(B,A) (ZITZLER; THIELE,
1999). In the simulations, A will be composed of the solutions of the DR multi-objective
model presented in this work using the NSGA-II, while B will be composed of the

solutions of the random search algorithm.
Hypervolume

The Hypervolume (HV) was calculated to evaluate the performance of the
results from the DR model. An HV is a performance metric that calculates the volume
of the objective space among the set of solutions found and a reference point; here,
the reference point was the nadir point, which is the vector whose elements are the
worst values of each criterion of the multi-objective problem (LU; ANDERSON-COOK,
2013; ZITZLER, E.; BROCKHOFF, D.; THIELE, 2007). The higher the HV value is, the
better the convergence, extension and uniformity are (ZITZLER; THIELE, 1999).
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Hypervolume Indicator

Various authors (ZITZLER, E.; BROCKHOFF, D.; THIELE, 2007) consider
that hypervolume indicators are based on polytope volumes and/or hypercubes. Also,

the Pareto dominance is considered to be the underlying preference.

Equation (23) shows that the attainment function demonstrates that each
objective vector in the objective space Z = [0, 1]" is weakly dominated by the result of
some multi-objective optimizer (ZITZLER, E.; BROCKHOFF, D.; THIELE, 2007).

Definition 1 (attainment function of an objective vector set). If A € 2, then the
attainment function aA: [0,1]" — {0,1} for A is

1 ifAz{z}
0 else

an(@) = { (29)

forz € Z.

Attainment function concepts can give definitions of hypervolume indicators.
The hypervolume is the volume of the objective space surrounded by the attainment
function and the axes (ZITZLER, E.; BROCKHOFF, D.; THIELE, 2007).

Definition 2 (hypervolume indicator). The hypervolume indicator I;; and a reference

point (0,...,0) are described by attainment function as thus:

a,..,1)

I;;(A) = f aA(z)dz (24)

(0,..,0)

where A is an objective vector set among all possible objective vector set: 2 :=
2%Z (ZITZLER, E.; BROCKHOFF, D.; THIELE, 2007).

The authors in (ZITZLER et al., 2003) state that HV is the only unary metric
that can evaluate if one set of solutions S is not worse than another S set. Thus, a set
of solutions is Pareto optima only when the HV is maximized and vice versa. Thus, the
main characteristic of HV is that it is compatible with the dominance of Pareto; if one
population of Pareto dominates another, then this one has an HV greater than the
dominated one. In addition, it does not need the real Pareto frontier of the problem in
its calculation (ZITZLER et al., 2003; ZITZLER; THIELE, 1999).
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4.3.1.1.1 Statistical Results

Simulations with a random search algorithm are used to calculate the
Coverage metric. A random search algorithm is a genetic algorithm (GA) (HOLLAND,
1975), with a random selection method that does not use heuristics, called random
GA, and is compared to the NSGA-Il optimization technique. Thus, the C (ZITZLER,;
THIELE, 1999) metric is used to determine which of the techniques (NSGA-II or
random GA) has the best coverage. The Hypervolume (HV) metric (ZITZLER et al.,
2003; ZITZLER; THIELE, 1999) is used to evaluate the overall performance of the two
techniques (NSGA-II or random GA) in more detail. Both NSGA-Il and random GA
were performed 1000 executions to reduce the impact of their stochastic nature and to

obtain the values to be used in the statistical analysis.

The results of the study with the NSGA-II optimization technique were compared
with the values from the random GA in order to validate the correctness of the algorithm
(sanity check). The values of the spacing metric showed that the NSGA-Il (minimum
14.32 and maximum 18.11) had a greater diversity of solutions than the random GA
(minimum 10.25 and maximum 15.96) Therefore, the NSGA-II had a better coverage
of the search space, and this translates into a better comprehension of the objectives

considered in the problem.

In the metric C the values obtained for both C(4, B) and C(B, A) indicate that, in
all cases, the Pareto frontier solutions found by the NSGA-Il completely dominated the
frontier solutions of Pareto found by random GA. Additionally, it utilized the time spent
(milliseconds) in solving the problem as another evaluation metric. This result shows
that the NSGA-II presents better solutions than the random GA, considering the Pareto

frontier of both techniques.

On validating the results of space and coverage metrics the analysis of the
Hypervolume values found in the simulations indicates a significantly better general
performance of NSGA-Il (minimum 0.55 and maximum 0.63) about random GA
(minimum 0.34 and maximum 0.45). This information indicates that the results of the
computer simulations obtained by the NSGA-II completely dominate the values
reached by random GA reflecting its better performance, regarding convergence and
extension, of the solution considering the search space (ZITZLER; THIELE, 1999).
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Finally, it can be seen in the statistical results that the NSGA-II obtained a
minimum execution time of 56 and a maximum of 70, while the Random GA presented
a minimum execution time of 60 and a maximum of 77. Therefore, both the NSGA-I|
and Random GA with these execution times enable the load scheduling to provide a
reduction in electricity costs, as well as minimize the inconvenience caused to the end

consumers promptly. Table 54 shows the statistical values for the simulations.

Table 54 — Statistical analysis.

Algorithm Metric Min Max | Average | Standard Deviation
NSGA-II Spacin 14.32 | 18.11 16.06 1.14

Random GA pacing 1025 | 15.96 | 14.37 1.06
NSGA-II

Random GA C(A B) 1 1 1 0
NSGA-II

Random GA C(B A 0 0 0 0
NSGA-II HY 0.55 0.63 0.58 0.01

Random GA 0.34 0.45 0.39 0.01
NSGA-II . 3 56 70 65 0.5

Random GA | runtime (x10%) g, 77 70 05

4.4 Final Considerations

In this chapter, the experiments scenarios (mono and multi-objective),
distinct electricity consumption profiles, different home appliance categories, the
parameters and the statistical metrics were used to validate the solutions obtained

during the computational simulations were presented.

The results obtained by the HEMS through its operational core (EMC) using
LINGO, GA, PSO, and NSGA-II techniques were promising. In the mono and multi-
objective scenarios, HEMS was able to achieve a good level of feasible solutions to
DR problems that involved cost minimization related to energy consumption as well as
minimizing the inconvenience level for end consumers in the residential setting studied
in this thesis. Thus, the DR optimization model achieved the goal of reducing the total
cost of electricity to end consumers by programming the use of home appliances.

It is worth mentioning that obtaining the largest reductions in the cost
associated with electricity consumption indicates that the load (re)scheduling was
distributed throughout the planning horizon for schedules that present the lowest value
to be paid for electricity consumption, reaching better results. About the inconvenience,
as higher the values are, greater the interference of the DR optimization model will be,

in relation to the use of the residential appliances and in the preferences of the final
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consumers; that is, the load displacements directly affect the standard of energy
consumption, obliging the consumer to modify their routine, which is not always

pleasant.

Statistical analysis was performed using Diversity, Coverage and
Hypervolume metrics to construe the results obtained through the NSGA-II involving
load scheduling to minimize the cost associated with energy consumption as well as

to minimize the inconvenience level for the consumers.

These computational simulations demonstrated the efficiency of the
optimization techniques used to solve the DR problem presented in this thesis. In
Appendix B, a comparison of optimization techniques (LINGO, PSO, GA, and NSGA-
II) is given in detail, and it highlights some aspects such as the mathematical
formulation to be solved, the proposal applied in each technique, the experiment
scenarios used in the computational simulations with each technique and, finally, the

parameters used by each technique during the experiments.



Chapter 5

CONCLUSIONS AND FUTURE WORKS

This chapter presents the conclusions of this thesis and suggests some possibilities for

future works.

5.1 Final Conclusions

Scheduling management of home appliances in smart grids enables the
EPS to be more efficient and effective because issues such as power interruptions
during peak demands can be minimized. Thus, DR plays a key role in managing energy
consumption in order to avoid overloading as well as reducing the cost of electricity for
end consumers. However, this optimized operation of home appliances requires an
infrastructure capable of scheduling the operating periods of the devices over the
planning horizon, and thus reducing the periods of peak demand, and improving the
reliability and efficiency of the EPS minimally affecting the satisfaction/comfort of end

consumers.

Therefore, this thesis proposes a home energy management system
(HEMS) and a multi-objective DR optimization model to manage the scheduling of
electrical appliances in residencies, aiming at minimizing the cost associated to the
energy  consumption, as well as minimizing the inconvenience

(dissatisfaction/discomfort) of end consumers.

The performance of the HEMS using the DR optimization model was
evaluated through simulations. First, the efficiency of the HEMS was analyzed for cost
minimization associated with the consumption of electric energy as well as
inconvenience (dissatisfaction/discomfort) minimization of end consumers of the
different residential Scenarios. Besides, the HEMS performance was evaluated for the
load scheduling of various appliances in order to verify the influence of such appliances
to reduce the cost of electricity. Next, through the diversity, coverage and hypervolume
metrics, the characteristics of the solutions for the problem of scheduling the home

appliances were evaluated.
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5.2 Main Contributions

The contributions of this thesis are directly related to the development of
HEMS, a system applied to the DR problem that involves the usage management
process of residential appliances in order to minimize the cost associated to the
electricity consumption and the inconvenience level for the end consumers. Therefore,
this section summarizes the main contributions resulting from the research work

presented in this thesis.

The first and second contributions of this thesis are two studies of the state
of art conducted in an initial phase of this work. The first consists of the study about
the conceptualizations related to smart grid and demand response. The second is a
literature review of the existing solutions to solve the load scheduling problem
considering TOU, RTP and CPP tariff models in order to minimize the cost associated
with the consumption of electric energy as well as reduce the inconvenience level to
end consumers regarding the use of different categories of home appliances. These

contributions are described in Chapter 2.

The third contribution is a solution to manage the use of home appliances
through a DR model that aims to minimize the cost associated with the consumption
of electric energy for different profiles of energy consumption interfering as little as
possible in the satisfaction / comfort level of end consumers. The DR model presented
in this thesis was evaluated and validated by the LINGO tool for scenarios which
considers geographic positioning and climatic temperatures that vary in 10 Brazilian
capitals, distributed by the 05 regions of the country. This contribution can be found in
Chapter 4.

The fourth contribution is a solution (a mono-objective DR optimization
model) for residential consumers based on real-time pricing of electricity (RTP) to
minimize the cost of electricity related to consumption. The computer simulations used
families that had different profiles of load consumption but the same number of
members: 02 working adults and 02 teenagers. These families lived in 05 Brazilian
cities (Palmas-TO, Cuiaba-MT, Jodo Pessoa-PB, Rio de Janeiro-RJ e Florianopolis-
SC) that are in 05 different regions of the country: North, Midwest, Northeast,
Southeast, and South. The proposed optimization model was solved computationally

using a genetic algorithm (GA), which determines the programming of home
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appliances for the entire time horizon. This contribution is in the Chapter 4 and it was
published in XIlIl Simposio Brasileiro de Automacéo Inteligente (SBAI) (SILVA et al.,
2017).

The fifth contribution is a solution that refers to the development of a mono-
objective DR optimization model for residential consumers that considers the real-time
pricing of electricity to minimize the costs related to the consumption of electric energy,
and it ponders the operational aspects of each home appliance. Computational
simulations were applied to an energy consumption profile (family with 02 working
adults and 02 teenagers) living in 05 Brazilian cities: Belem-PA, Brasilia-DF, Teresina-
Pl, Sao Paulo-SP, and Curitiba-PR. It can be found in Chapter 4 and this contribution
was published in the International Conference on Systems, Man, and Cybernetics
(SMC) (VERAS et al., 2017).

The sixth contribution is also a solution (multi-objective DR optimization
model) that applied the real-time pricing of electricity to solve the optimal management
problem of residential loads. Its purpose was to minimize both the cost of electricity
associated with consumption and the inconvenience (dissatisfaction/discomfort)
caused to consumers. The proposed model was formalized as a nonlinear
programming problem subjected to a set of constraints related to the electricity
consumption and operational aspects about the home appliance categories. The
proposal was solved computationally through the Nondominated Sorted Genetic
Algorithm (NSGA-II) to determine the new scheduling of home appliances for 02 (two)
different residential scenarios (02 adults with 03 children and 01 adults without
children). This contribution is in Chapter 4 and it was published in XXIlI Congresso
Brasileiro de Automatica (CBA) (VERAS et al., 2018b).

The seventh contribution is a solution that uses the DR model proposed in
(VERAS et al., 2017) and analyzed the electricity consumption data from 10 families
in the year 2015 in 10 capitals (Belém-PA, Palmas-TO, Brasilia-DF, Cuiaba-MT,
Teresina-Pl, Jodo Pessoa-PB, Sao Paulo-SP, Rio de Janeiro-RJ, Florianépolis-SC
and Curitiba-PR) that are located in the 05 main different regions of Brazilian. This
proposal is also in Chapter 4 and it was published in Sustainability Journal (VERAS et
al., 2018c).

The eighth contribution is a Home Energy Management System (HEMS)
solution based on the studies presented in (VERAS et al., 2017) (VERAS et al., 2017)
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(VERAS et al., 2018b) and (VERAS et al., 2018c) to manage the use of home apliances
in different scenarios of energy consumption (Scenario 1 - two adults without children;
Scenario 2 two adults with three children; Scenario 3 - one adult without children) that
validated their efficiency about the planning of the use of the home appliances. Thus,
using the NSGA-II technique, the HEMS allows to manage the use of home appliances
in order to minimize the cost associated with energy consumption as well as minimize
the inconvenience level of consumers. This contribution was published in Sensors
International Journal and can be found in Chapter 4 (VERAS et al., 2018a).

5.3 Limitations

Several factors influenced possible limitations to the HEMS proposal in

developing, executing and analyzing this work, such as:

1. The insertion of renewable sources of electricity generation, an energy
storage system and electric vehicles were not included in the mathematical formulation
presented in Chapter 3;

2. A comparative analysis of communication technologies for smart grids
and demand response was not performed;

3. The App Mobile, which allows end consumers to monitor the cost and the
power consumption of each home appliance and also (re)schedule the use of the loads
according to their preferences, has not been implemented,;

4. Other tariff models such as TOU were not used during the computational
simulations;

5. The experiments were performed in a simulated environment.
5.4 Future Works

Based on the limitations presented in Subsection 5.3, the continuity of the

research can be further improved in several directions, as follows:

- To improve the DR optimization model in order to include some features
of the microgrids, such as the use of electric vehicles, renewable sources for the
generation of electric energy and energy storage systems;

- To use exact methods to solve multi-objective problems in demand

response scenarios;
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- To conduct a comparative analysis between the communication
technologies used in the SGs to determine the best ones for residential scenarios;

- To implement the App Mobile to facilitate the user programming of the
home appliances by the end consumers;

- To evaluate the performance of HEMS about the reduction of the cost
associated with the electric energy consumption contemplating different tariff models;

- To perform experiments in real environments.
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APPENDIX A: SCRIPT LINGO NONLINEAR PROGRAMMING

sets:
periodo/@ole(NomePlanilha.xls)/:custo, load;
aparelho/@ole(NomePlanilha.xls)/.categoria, e, p, req;
matriz(periodo, aparelho):DSoA, consreal, consrealbin;

endsets

data:

custo, dmax, dmin, categoria, e, p, req, rd, ru, mdc, st, et, consreal =

@ole(NomePlanilha.xls);
enddata
calc:
@for(matriz(t,i)|consreal(t,i)#EQ#0:consrealbin(t,i)=0);
@for(matriz(t,i)|consreal(t,i)#GT#0:consrealbin(t,i)=1);
endcalc
IFuncgéao objetivo - (1);
[FOImin = @sum(aparelho(i):e(i)*@sum(periodo(t):custo(t)*DSoA(t,i))*2);
@sum(aparelho(i):e(i)*@sum(periodo(t):custo(t)*DSoA(t,i))) = custo_total,
IRestricao - (2);
@for(periodo(t):[DEF_LOAD]@sum(matriz(t,i):DSoA(t,i)*p(i)) = load(t));
@for(periodo(t):[LIMITE_Dt]J@bnd(dmin, load(t), dmax));
IRestricao - (3);
@for(periodo(t)|t#LE#et-1:[LIM_MAX_ri@sum(aparelho(i):(DSoA(t,i)-
DSoA(t+1,i))*p(i)) <= rd);
IRestricao - (4);
@for(periodo(t)|t#LE#et-1:[LIM_MIN_rl@sum(aparelho(i):(DSoA(t+1,i)-
DSoA(t,1))*p(i)) <= ru);
IRestricao - (5);
[MDC_J@sum(matriz(t,i):DSoA(t,i)*e(i)) >= mdc;
IRestricao - (6);

@for(aparelho(i)|categoria(i)#EQ#1:[CAT_1]@sum(periodo(t):DSoA(t,i))>=req(i));

IRestricao - (7);
@for(aparelho(i)|categoria(i)#EQ#2:[CAT_2]@sum(periodo(q)|g#LE#et-

req(i)+1:@prod(periodo(t)[t#GE#q#AND#t#LE#req(i)+(g-1):DSoA(t,i)))>=1);

IRestricao - (8);

@for(aparelho(i)|categoria(i)#EQ#3:[CAT_3]@sum(periodo(t)[t#GE#1#AND#t#LE#re

q(i):DSoA(t,i))>=req(i));

IDSOA binaria;

@for(matriz(t,i):@bin(DSoA(t,i)));

luso_bin binaria;
@for(matriz(t,i):@bin(consrealbin(t,i)));
lInconveniéncia;
@sum(matriz(t,i):(consrealbin(t,i)-DSoA(t,i))*2)=inconv;

IConsumo;
@sum(matriz(t,i):e(i)* DSoA(t,i)) = consum_otimiz;
data:
@ole(dadoscui.xls) = DSoA, load, custo total, consrealbin,

consum_otimiz;
enddata

inconv,
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