

UNIVERSIDADE FEDERAL DO PIAUI PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

PREPARAÇÃO E CARACTERIZAÇÃO DE COLA AMILÁCEA DE BABAÇU (Orbignya sp) COM ADIÇÃO DE RESINA MELAMINA-FORMALDEÍDO

Mestrando: Raimundo Oliveira Lima Júnior

Orientador: Prof. Dr. José Ribeiro dos Santos Júnior

Teresina - Piauí

RAIMUNDO OLIVEIRA LIMA JÚNIOR

PREPARAÇÃO E CARACTERIZAÇÃO DE COLA AMILÁCEA DE BABAÇU (Orbignya sp) COM ADIÇÃO DE RESINA MELAMINA-FORMALDEÍDO

Dissertação submetida ao Programa de Pós-Graduação em Química – PPGQ - da Universidade Federal do Piauí – UFPI, como requisito complementar para obtenção do título de Mestre em Química.

Orientador: Prof. Dr. José Ribeiro dos Santos Júnior

Teresina - Piauí

Defesa de dissertação apresentada ao corpo docento	e do Programa de
Pós-graduação em Química- PPGQ – da Universidade Feder	al do Piauí - UFPI,
como parte dos requisitos necessários para obtenção do tít	tulo de Mestre em
Química.	
Defesa aprovada em	
Raimundo Oliveira Lima Júnior	
BANCA EXAMINADORA	
Prof. Dr. José Ribeiro dos Santos Júnior Orientador	
Membro	
Membro	

suplente

"Ao purpúreo mar lança a tristeza d'alma que oferta A insignificância da vida sem a honrosa descoberta" (Raimundo Oliveira Lima Júnior)

AGRADECIMENTOS

Acima de tudo, agradeço a Deus por todas as bênçãos que me deu não só para completar este mestrado, como por toda minha vida.

Aos meus pais, Raimundo Oliveira Lima e Maria de Fátima Fialho Lima, pela criação com valores e por todo o apoio.

À minha esposa, Thamires Pereira dos Santos, por sempre estar ao meu lado, por dar apoio e ajudar durante todo este curso.

Aos meus irmãos, Rony Pettyson Fialho Lima e Ronylson Fialho Lima, pela amizade e companheirismo.

A todos os parentes e amigos que ajudaram direta ou indiretamente para a realização deste sonho.

Ao grupo Bioeletroquímica, na pessoa do prof. Dr. José Ribeiro dos Santos Júnior, pela orientação, amizade e disponibilidade em ensinar tudo que é indispensável para obter o grau de Mestre em Química.

Ao professor Francisco Cardoso Figueiredo pelo auxílio na pesquisa, pela amizade e pelos ensinamentos para esta pesquisa.

Ao Programa de Pós-graduação em Química da Universidade Federal do Piauí, em nome dos professores que o compõem, pelo uso dos laboratórios, pelas aulas e análises para a realização deste trabalho.

À empresa Babcoall Ins. do Brasil Ltda, na pessoa do proprietário Tiago Patrício, pela doação do mesocarpo para pesquisa.

Ao LIMAV da Universidade Federal doPiauí, pelas análises de TG/DSC e MEV realizadas nas amostras.

À professora Maria Letícia Vega e ao Laboratório de microscopia de força atômica da UFPI pelas análises realizadas.

Aos colegas de mestrado, pela convivência.

LISTA FIGURAS

Figura 1. Mesocarpo de babaçu da empresa Babcoall Ins. do Brasi
Ltda22
Figura 2. Estrutura padrão do amido23
Figura 3. Estrutura tautomérica da melamina: (a) forma enamina. (b) forma
mina27
Figura 4. Peneiras e agitador para tamização30
Figura 5. Espectrômetro Thermo Scientific Nicolet iS
1033
Figura 6. Microscópio eletrônico de varredura FEI Quanta FEG
25033
Figura 7. NT-MDT-NTEGRA Spectra, Microscópio de Força Atômica e Raman com
inhas em 473 e 785 nm, disponível no DF- CCN
UFPI34
Figura 8. Fluxograma de produção de mesocarpo de babaçu
comercial
Figura 9. (a) mesocarpo de babaçu tamizado. (b) água de lavagem de
mesocarpo de babaçu40
Figura 10. (a) mesocarpo lavado em água destilada. (b) mesocarpo lavado com
água destilada e com solução aquosa de NaOH 0,05mol.L- ¹ (c) mesocarpo
avado com água destilada, solução básica de NaOH 0,05mol.L ^{- 1} e em solução
de H ₂ O ₂ 17,5%42
Figura 11. Amido de mesocarpo de babaçu branqueado e
riturado43
Figura 12. Estruturas dos produtos formados pela adição de formaldeído à
melamina em proporções molares determinadas de melamina:formaldeído: (a)
1:1. (b) 1:2. (c) 1:3. (d) 1:4. (e) 1:5. (f)
1:646
Figura 13. Mecanismo reacional para síntese da resina melamina
formaldeído47
Figura 14. Resina melamina-formaldeído: (a) pura. (b) dissolvida em
etanol

Figura 15. Espectros na região do Infravermelho do mesocarpo de babaçu,
mesocarpo de babaçu branqueado, amido de mesocarpo de babaçu
branqueado e amido solúvel comercial50
Figura 16. Espectros na região do Infravermelho da melamina, metiol-melamina
e cola solúvel de amido de mesocarpo de babaçu com aditivo de resina
melamínica51
Figura 17. Estruturas fotografadas em microscópio eletrônico de varredura com
aumento de 2000 vezes: (a) mesocarpo de babaçu. (b) amido branqueado de
mesocarpo de babaçu. (c) resina melamina-formaldeído. (d) cola impermeável
de amido de mesocarpo de babaçu com aditivo de resina
melamínica53
Figura 18. Estrutura de porção seca da cola impermeável de mesocarpo de
babaçu54
Figura 19. TGA/DSC da cola de amido de mesocarpo de
babaçu55
Figura 20. TGA/DSC da cola de amido de mesocarpo de babaçu com aditivo de
resina melamina-formaldeído56
Figura 21. AFM das amostras: (a) resina com ampliação de 10 μm ; (b) resina
com ampliação de 5 μm ; (c) resina com ampliação de 3 μm ; (d) cola amido +
resina com ampliação de 10 μm ; (e) cola amido + resina com ampliação de
$5\mu m$; (f) cola amido + resina com ampliação de $3\mu m$; (g) cola amido com
ampliação de 10 μm ; (h) cola amido com ampliação de 5 μm ; (i) cola amido com
ampliação de 3 μm 57
Figura 22. Teste de colagem: (a) metal, (b) madeira, (c) cerâmica e (d)
superfície mista metal e madeira62

LISTA DE TABELAS

Tabela 1. Porcentagem de massa retira em relação às dimensões dos po	oros da
peneira	38
Tabela 2. Comportamento da cola impermeável quanto a absorção de	e água
com o tempo	60

LISTA DE ABREVIATURAS E SIGLAS

DSC Calorimetria diferencial de varredura

DTG Derivada da termogravimetria

FTIR. Espectroscopia na região do infravermelho por transformada de

Fourrier

MEV Microscopia eletrônica de varredura

MFA Microscopia de força atômica

TGA Termogravimetria

RESUMO

LIMA JÚNIOR, R.O. Preparação e caracterização de cola amilácea de babaçu (*Orbignya sp*) com adição de resina melamina-formaldeído.

Orientador: José Ribeiro dos Santos Júnior. Teresina – PI: UFPI, 2017. (Defesa – Mestrado em Química).

O coco babaçu é um fruto típico do nordeste brasileiro e pode ser dividido em várias partes: amêndoas, endocarpo, mesocarpo e epicarpo, sendo que cada uma destas tem variados usos. O mesocarpo é uma porção rica em amido e fibras, sendo culturalmente utilizado tanto para a alimentação humana como de rebanhos. No entanto, por ter um elevado conteúdo mássico de amido (60%), pode-se utilizar esta matéria para outros fins, como a indústria de colas. Neste contexto, a proposta do presente trabalho foi desenvolver uma cola amilácea com base no mesocarpo de babaçu e para sanar o problema relacionado à solubilidade em água da mesma, desejou-se adicionar resina melamina formaldeído para tornar o adesivo impermeável. A metodologia seguida partiu da obtenção do mesocarpo (fornecido pela empresa Babcoall), em seguida extraiu-se o amido e este foi branqueado. Em meio aquoso o amido foi gelatinizado e a este foi adicionado a resina melamina-formaldeído para obter o produto final. Os resultados foram obtidos por caracterização via FTIR, MEV, absorção de umidade e tempo de colagem. Verificou-se que a cola apresentou uma estrutura compacta e baixa absorção e solubilidade em água, o que demonstrou as propriedades colantes e a impermeabilidade do adesivo. Em suma, verificou-se que a metodologia foi adequada para o desenvolvimento do produto e que este apresenta as propriedades colantes e hidrofóbicas desejadas.

Palavras-chave: babaçu; mesocarpo de babaçu; cola de amido; resina melamina-formaldeído; cola impermeável.

ABSTRACT

LIMA JÚNIOR, R.O. Preparation and characterization of starchy glue babassu (Orbignya sp) with the addition of melamine formaldehyde resin.

Advisor: José Ribeiro dos Santos Júnior. Teresina – PI: UFPI, 2017. (Defesa – Mestrado em Química).

The babassu coconut is a fruit typical of northeastern Brazil and can be divided into several parts: almonds, cored, mesocarp and epicarp. Since each of these has a variety of uses. The mesocarp is a rich portion of starch and fiber, and culturally used both for human consumption as herds. However, for mass having a high starch content (60%), one can use this field for other purposes such as adhesives industry. In this context, the purpose of this study was to develop a starchy paste based on mesocarp babassu and to remedy the problem related to the solubility in water of the same, wished to add melamine formaldehyde resin to make the waterproof adhesive. The methodology of obtaining departed mesocarp (supplied by the company Babcoall) then extracted starch and it was milled. In aqueous media the starch was gelatinized and to this was added melamine formaldehyde resin to get the final product. The results were obtained for characterization via FTIR, SEM, moisture absorption and bonding time. It was found that the glue had a compact structure and low water absorption and solubility, which showed the spandex properties and impermeability of the adhesive. In short, it was found that the method was suitable for the development of the product and that has the desired adhesive and hydrophobic properties.

Keywords: babassu; mesocarp babassu; starch glue; melamine-formaldehyde; waterproof glue.

SUMÁRIO

1. Introdução	15
2. Objetivos	17
2.1. Objetivos gerais	17
2.2. Objetivos específicos	17
3. Fundamentação teórica	18
3.1.Babaçu	18
3.2. Mesocarpo de babaçu	20
3.3. Amido de mesocarpo de	22
babaçu	
3.4. Adesivo	24
3.5. Melamina	26
4. Parte experimental	28
4.1.Processamento do mesocarpo do babaçu (<i>Orbignya</i> sp)	28
4.2. Determinação da granulometria do mesocarpo	28
4.3. Processo de clarificação do mesocarpo do babaçu (Orbignya sp)	29
4.4.Extração do amido do mesocarpo do babaçu	30
4.5. Preparo da cola	30
4.6. Preparo da resina	31
4.7. Caracterização do material	31
4.7.1. Espectroscopia na região do infravermelho (FTIR)	31

 4.7.2. Microscopia eletrônica de varredura 	32
4.7.3. Análise termogravimétrica	33
4.7.4. Microscopia de força atômica (AFM)	33
4.7.5. Medida de viscosidade	34
4.8. Avaliação do adesivo	34
4.8.1. Tempo de colagem	34
4.8.2. Absorção de umidade	34
4.8.3. Tempo de prateleira	35
5. Resultados e discussão	36
5.1. Processamento do mesocarpo do babaçu (<i>orbignya sp</i>)	36
5.2. Determinação da granulometria do mesocarpo	37
5.3. Processo de clarificação do mesocarpo do babaçu (orbignya sp)	38
5.4. Extração do amido do mesocarpo do babaçu	41
5.5. preparo da cola	42
5.6. Preparo da resina	44
5.7. Caracterização do material	48
5.7.1. Espectroscopia na região do infravermelho (ft-ir)	48
5.7.2. Microscopia eletrônica de varredura	51
5.7.3. Análise termogravimétrica	53
5.7.4. Microscopia de força atômica (afm)	55

	5.7.5. Medida de viscosidade	58
	5.8. avaliação do adesivo	58
	5.8.1. Tempo de colagem	58
	5.8.2. Absorção de umidade	59
	5.8.3. Tempo de prateleira em ambiente aberto e fecha	
(6. Conclusão	62
-	7. Referências	63