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Centro de Ciências da Natureza

Programa de Pós-Graduação em F́ısica
Mestrado em F́ısica

Ana Luiza Mariano Torres Costa
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Resumo

Nesta dissertação, as propriedades de transporte eletrônico de junções graf́ıticas de três

terminais são estudadas utilizando-se uma combinação de método tight-binding e teoria

de transporte eletrônico baseada nos formalismos de funções de Green e de Landauer. As

junções são compostas de uma estrutura triangular composta de três nanofitas de grafeno

de borda armchair unidas de modo a formar um triângulo equilátero. Nós mostramos

como detalhes da região central influenciam o transporte ressonante através das regiões

triangulares e destacamos as caracteŕısticas especiais do fluxo de corrente como função

da geometria. Estas propriedades explicitam um conjunto de funcionalidades visando o

desenvolvimento de nanocircuitos complexos baseados no carbono e de dispositivos op-

eracionais em nanoescala.

Palavras-Chave: Nanofita de grafeno, função de Green, transporte eletrônico.
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Abstract

The electronic transport properties of three-terminal graphene-based triangular patches

are investigated using a combination of semi-empirical tight-binding calculations and

Green’s function-based transport theory within Landauer’s framework. The junctions

are composed of a triangular structure based on armchair edged graphene nanoribbons.

We show how details of the central region influence the resonant electronic transport

across the triangular patches and highlight the unique features of the current flow as

a function of geometry. These properties indicate an array of functionalities for the de-

velopment of carbon-based complex nanocircuits and operational devices at the nanoscale.

Keywords: Graphene nanoribbons, green’s functions, electronic transport.



“Imagination is more important than knowledge. For

knowledge is limited to all we now know and understand,

while imagination embraces the entire world, and all

there ever will be to know and understand..”

– Albert Einstein –
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1 The Nano World

“Nano” is a prefix which is appeariang more frequently in science, technology and

even in the media. The size of electronic devices is decreasing in size and we can see this

miniaturization. Before, most electronic components could be easily seen as they have

the size of some centimeters, as the valves of the first computers. With the passing of

decades, these objects were miniaturized and started having dimensions of millimeters,

in other words, they had a ten times reduction in their size and these dimensions were

decreasing to micrometers until we reach the nanoscale. This Chapter is dedicated to talk

about nanoscience and nanotecnology. We will discuss historical aspects, the evolution

over the years and the impacts in the society.

1.1 The beginnings of Nanoscience

Nano is the prefix for units of 10−9, so that one nanometer is a billionth part of a

meter or a millionth of a millimeter. In 1959, Richard Feynman envisioned nanotech-

nology for the first time in his lecture “Plenty of room at the bottom”, at the (look

for the conference name). He questioned if it was possible for us to write the entire 24

volumes of the Encyclopedia Brittanica on the head of a pin. Feynman imagined the

future and challenged the audiences saying: “It’s my intention to offer a prize of 1,000

dollars to the first guy who can take the information on the page of book and put it on

an area 1/25,000 smaller in linear scale in such manner that it can be read by an electron

microscope. And I want to offer another 1,000 dollars to the first guy who makes an

operating electric motor, a rotating motor which can be controlled from the outside and,

not counting the lead-in wires, is only 1/64 inch cube” [3]. In Feynman’ opinion, there

was so much space in the small scale that if we could manipulate atoms individually, then

we could create things as small as we wanted. We know, since a long time ago, that

everything on Earth is made up of atoms and now the science is learning to do different

things from atoms. This is the essential concept for nanoscience, proposed by Feynman

decades ago. Nanotechnology is already present in some applications in different areas,

like medicine, chemistry, biology, physics and materials science, and consists in the ability
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of seeing and controlling individual atoms and molecules below 100 nanometres in one

or more dimensions. However, this is a new and hard world to explore, since matter

presents new properties at the nanoscale. For this reason, a large effort on research has

been devoted to the aim of building knowledge which can enable the development of new

technologies based on the properties of materials when manipulated at the nanoscale.

As a result, possible nanotechnology applications can be seen in medicine, for example,

where nanomaterials allow the development of good implants. In addition, there is a po-

tential market for nanoparticles to be used as vehicles for drugs delivery and in cosmetics.

Nanotechnology can also act in environmental applications since nanoparticles have the

hability to adsorve selected contaminants from water, for instance [4]. Another practical

nanomaterial application, was presented by Tans and co-workers, where they fabricated

a nanotransistor based in a single walled carbon nanotube, in the latter nineties [5]. An

application still more surprising and recent may be found in the carbon nanotube based

computer, presented by Shulaker et al [6], and these are only two drops in the vast sea

of nanotech applications. In the nanotechnology scenery, carbon is certainly one of the

most important elements. Since the antiquity it is used in some applications and more

and more scientific studies involving this element have been done. This is because this

element combine easily to form a big variety of nanostructures that may be used for many

applications. We will talk about this element in next section and explain why carbon is

so scientifically and technologically important.

1.2 The Carbon

Back to the beginning of the planet, carbon was present with hidrogen, nitrogen and

oxigen creating essential conditions to the appearance of life on earth, so the carbon is

the essential element around which developed life. But why the carbon is chosen to be

this element? Why not one of the others elements? This is because its atomic structure

which allows for the formation of a larger variety of structures compared to many others

elements. Carbon is the sixth element of the periodic table of elements, having four

electrons in its valence. The most important characteristic of carbon is its versatile

ability to share electrons with another carbon atoms so as to form different configurations

of carbon-carbon bonds, this is the basis of organic chemistry. Silicon, like carbon can form

these bonds, but at the earth atmosphere the compounds based on silicon-silicon bonds

oxidize forming silica, which makes sand and quartz. These materials do not provide life

on earth. Because this, carbon is the spinal cord of organic chemistry and the molecular

components of living things.
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Carbon also forms inorganic structures. Diamond and graphite, are the “old al-

lotropes” of carbon. In the diamond structure, each carbon atom bonds to four other

carbon atoms in a tetrahedral geometry. This is the most resistant material in nature.

The graphite consist of the superposition of layers called graphene sheets. The carbon

atom has strong covalent bonds inside the layer and bonds to three another carbon atoms

through covalent bonds of the σ type. The fourth electron of each carbon atom forms a

itinerant bond of the type π, what makes the graphite a good conductor. Exist a weaker

attraction between the layers of graphite and them can be easily separated. The atomic

structures for diamond and graphite could be seen in Figure 1.1.

(a)

(b)

Figure 1.1: Illustration of the diamond (a) and graphite (b) structures.

1.3 Hybridization

Carbon atoms has six electrons that obey, in ground state, the following configuration

1s22s22p2. The 1s2 orbital contains two electrons strongly bounded to the nucleus and

they are called core electrons. Four electrons occupy the 2s22p2 orbitals, and these more

weakly bounded electrons are called valence electrons.

Once the energy step between the upper 2p energy levels and the lower 2s level for

carbon is not very high compared with the binding energy of the chemical bonds [7], the
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electrons of these orbitals can easily assume states that are linear combination of |2s〉,
|2px〉, |2py〉 and |2pz〉. These combinations are called spn hibridization, where n depends

of the number and directions of the bonds. We have three main hybridization schemes

which involve one 2s orbital and one (sp), two (sp2) or three (sp3) 2p orbitals.

1.3.1 sp hybridization

The s orbital mix with one of the p orbital (px, for example) to form this hybridization.

The two orbitals hybridized denoted by |spa〉 and |spb〉 are expressed by linear combination

of original orbital [7],

|spa〉 =
1√
2

(|2s〉+ |2px〉),

|spb〉 =
1√
2

(|2s〉 − |2px〉), (1.1)

This hybridization occurs when the atoms form linear chains, like in polyyne chains.

A simple carbon-based material showing this hybridization is acetylene. The schematic

representations of these hybrid orbitals are shown in Figure 1.2a.

1.3.2 sp2 hybridization

The sp2 hybridization, is characterized by the merge of, one s orbital and two p orbitals

(px e py, for instance) thus hybridized to produce hybrid orbitals allowing the formation

of three identical bonds making a 120◦ angle with each other. We will call these orbitals

sp2a, sp
2
b and sp2c . To get them we are going to use 2p orbitals pointing in the following

directions: (0,−1, 0), (
√
3
2
, 1
2
, 0) e (−

√
3
2
, 1
2
, 0), respectively. Due the symmetry of the 2s

orbital your coefficient for each orbital must be the same. This way, we can write:

|sp2a〉 = C|2s〉 −
√

1− C2[−|2py〉],

|sp2b〉 = C|2s〉+
√

1− C2[

√
3

2
|2px〉+

1

2
|2py〉],

|sp2c〉 = C|2s〉+
√

1− C2[−
√

3

2
|2px〉+

1

2
|2py〉], (1.2)

and using orthonormality conditions of |sp2a〉 and |sp2b〉, we can determine the coefficient

C

C2 − 1

2
(1− C2) = 0⇒ C = ± 1√

3
. (1.3)

A suggestive example for this hybridization is the graphene sheet. The schematic repre-

sentations of these hybrid orbitals are shown in Figure 1.2b.
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1.3.3 sp3 hybridization

This hybridization involves the s orbital and all three p orbitals. The carbon atom

makes four identical bonds, creating a tetrahedron. The four directions of tetrahedral

bonds from the carbon atom can be selected as (1, 1, 1), (−1,−1, 1), (−1, 1,−1) and

(1,−1, 1) [7], forming four hybridic orbitals which will be called sp3a, sp
3
b , sp

3
c and sp3d.

The linear combinations are

|sp3a〉 = C|2s〉+
√

1− C2
1√
3

[|2px〉+ |2py〉+ |2pz〉],

|sp3b〉 = C|2s〉+
√

1− C2
1√
3

[−|2px〉 − |2py〉+ |2pz〉],

|sp3c〉 = C|2s〉+
√

1− C2
1√
3

[−|2px〉+ |2py〉 − |2pz〉],

|sp3c〉 = C|2s〉+
√

1− C2
1√
3

[−|2px〉 − |2py〉+ |2pz〉],

(1.4)

and using orthonormality conditions

C2 − 1

3
(1− C2) = 0⇒ C =

1

2
. (1.5)

Such hybridization is found in methane (CH4) and in diamond. The schematic represen-

tations of these hybrid orbitals are shown in Figure 1.2c.

1.4 Carbon-based nanostructures

New carbon allotropes were discovered starting in the 80’s. In 1985, Kroto, Curl and

Smalley [8] discovered the fullerenes, a spherical molecule made of 60 carbon atoms, and

were awarded the Nobel Prize in chemistry in 1996. We can see this atomic structure in

Figure 1.3a. The interest and attention to carbon start to grow and, in 1991, S. Iijima

published a paper which reported the existence of carbon nanotubes [9]. That form

was the multi-wall carbon nanotubes (MWNT). Two years later, the single-wall carbon

nanotubes are discovered by Iijima [10] and Bethune [11]. A carbon nanotube structure

is illustrated in Figure 1.3b.

Although graphene was known since a long time, the scientists succeeded in isolating

just a single layer structure only in 2004 [12]. The resulting structure is a 2D material

composed of carbon atoms, having a thickness of only one atom and it is called graphene.

Graphene have interesting physical and chemical properties and it is a prospective material

for nanotechnology. We can see its atomic structure in Figure 1.3c. In the following, we
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  +

+

+

(a)

(b)

(c)

Figure 1.2: sp (a) sp2 (b) and sp3 hybridizations.

discuss about these carbon nanostructures.

1.5 Fullerenes and Carbon Nanotubes

In the fullerene structure, the carbon atoms are arranged on a spherical surface (C60)

or oval surface (C70). The first are also called buckyballs, since the carbon atoms are

placed in such way that they remember the seam of an old soccer ball. These structures

are composed by hexagons and pentagons (the last one are responsible for the curvature).

Carbon has an intermediary hybridization between sp2 and sp3.

The nanotube structure can be viewed as a graphene sheet rolled up into a tube.

Depending on the way how to roll the sheet, we have an armchair, zigzag or chiral nan-

otube [7]. The studies involving nanotubes excited the scientific community, because

they have special properties. They show a unique combination of stiffness, strength, and

tenacity compared to other fiber materials which usually lack one or more of these prop-
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(a) (b)

(c)

Figure 1.3: Fullerene (a) nanotube (b) and graphene (c).

erties. Thermal and electrical conductivity are also very high, and comparable to other

conductive materials.

The researches involving nanotubes made great progress in the laboratory. In 1998,

physicists demonstrate a transistor made from a single, semiconducting nanotube. In

2007, researchers reported the synthesis of a carbon nanotube based transistor radio.

The applications using nanotubes that were most successful is in composite materials for

planes and automobiles. Besides the commercialization of nanotube based conducting

films for energy storage and touch screens is very close to become a fact, according to the

Ref. [13]. But some difficulties remain to the use of nanotubes in electronics, because of

contact resistance.
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1.6 Graphene

After its isolation, graphene has been the focus of intense scientific investigations both

in theory and experiments, making graphene a hot subject in materials science. In 2010,

graphene was the subject of around 3000 research papers and more than 400 patent ap-

plications [13]. The effective mass of electrons in graphene tends to zero. Because this

they have a high electronic mobility (hundred times larger than silicon that is very used in

nanoelectronics). This explains its high thermal conductivity and the good electrical con-

ductivity, making graphene a promising material to be used in electronics. Furthermore,

graphene has some advantages in comparison to carbon nanotubes or fullerenes regarding

the control in their synthesis. But graphene is not perfect, it has problems too. We will

talk about this in next section, where we will study its electronic structure. Looking into

graphite’s case, the graphene’s layers are held together, due to van der Walls forces, which

makes such interaction between two adjacent layers very small compared to the intra-layer

bonds, which are very well known to be covalent bonds. The graphene’s atomic structure,

shown in Fig. 1.4, can be described as a Bravais lattice with a basis composed by two

atoms, or two identical inter-penetrating lattices. Considering the system in xy plane, a1

and a2 are unit vectors in real space of the hexagonal lattice and are expressed as

a1 = (

√
3

2
a,
a

2
), a2 = (

√
3

2
a,−a

2
), (1.6)

with a = acc
√

3. In the reciprocal space, we have the vectors b1 and b2, that are given

by:

b1 = (
2π√
3a
,
2π

a
), b2 = (

2π√
3a
,−2π

a
). (1.7)

We know that the limits of miniaturization of the electronics based on silicon are

approaching their limit, and graphene is regarded as a potential candidate to replace

silicon technology [13] and some companies already consider this material as one of the

technologies of the future. Even though there is a lot of work to do until these nanostruc-

tures based in carbon transform in technology to be available in stores, a huge effort in

research is being developed by the scientific community and many important results were

already obtained in the quest for to reduce the waiting time for the use of the graphene

in commercial scale.

1.6.1 Graphene’s electronic structure

The band structure of the material is a fundamental information when we study a

nanoscale systems. This is because it gives us the allowed values of energy to the electrons



1.6 Graphene 9

a1

a2

a

acc

Figure 1.4: Graphene bands structure with the honeycomb vectors.

of the system. In graphene, we can calculate the electronic structure using a tight-binding

model that will be explained better in chapter 2. According to this method, we can write

Eg2D(kx, ky) = ±γ

[
1 + 4 cos

(√
3kxa

2

)
cos

(
kya

2

)
+ 4 cos2

(
kya

2

)] 1
2

, (1.8)

where (kx, ky) is the wave vector and γ is the first neighbor hopping interaction. In Fig. 1.5

we plot this relation at the first Brillouin zone on the axes of high symmetry ΓM , ΓK e

MK. The density of states at the Fermi level is zero, so the graphene is a semiconductor

with zero gap.

1.6.2 Graphene nanoribbons

Graphene is a very interesting material and it is accepted as a potential candidate for

replacing silicon in the future technology. This material has a rich physics and because

this it has gained a rapid growth in the number of scientific publications based on both

experimental and theoretical studies.

Graphene is a very good conductor. Its ideal infinite structure do not have an energy
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(a) (b)

(c)

Figure 1.5: Eletronic band structure for the graphene shown over the Brillouin zone and
along the high symmetry lines.

gap and this is a problem because the presence of an energy gap is fundamental for some

applications in nanoelectronics. To this end, the scientists started to study many possi-

bilities to modify graphene’s structure creating an opening of the energy bands around

the Fermi level. Many methods show themselves to be capable to do it, like molecular

doping, defects, among others. One possibility for opening a band gap in graphene based

systems, is cutting down the entire graphene layer into very narrow stripes, thus creating
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structures called graphene nanoribbons (GNRs), which are quasi -unidimensional systems,

then confining the electron in one direction. [14, 2, 15]. Due to the confinement in one

direction, the electronic structure is quite dependent on their width and edge. They can

be either a semiconductor or a metal [14, 16]. These properties open many possibilities

for applications of the GNRs in electronic nanodevices. The main geometries for GNRs

are armchair (A-GNR, Fig. 1.6a) and zigzag (Z-GNR, Fig. 1.6b).

  

(a) (b)

Figure 1.6: Armchair graphene nanoribbon A-GNR (a) and zig-zag graphene nanoribbon
Z-GNR (b). The red boxes indicate the GNRs unit cells.

A-GNRs are semiconductors and their energy gap ∆n is strongly dependent on its

width, as we can see in the graph of Fig. 1.7. The gap decreases as we increase the

ribbon width. Here we show the bands structure for three A-GNRs with 8, 9 e 10 C −C
lines respectively. ,These were calculated using the Tight-Binding method described in

Chapter 2. The width of the A-GNR is denoted for the number of C − C (NCC) lines

along the periodic direction of the ribbon (NCC = 20 in Fig. 1.6a). The distance between

two C−C lines is aCC
√
3
2

, the width Wa of an A-GNR (without considering the hydrogens

on the edges), may be obtained by:

Wa =
(N − 1)aCC

√
3

2
. (1.9)

Depending the width, the ∆n versus NCC curve has three different branches so that

∆3n+1 ≥ ∆3n ≥ ∆3n−1 [14], as shown in Figure 1.8. In all cases, the gap tends to zero,
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when NCC →∞.
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Figure 1.7: Bands structures for A-GNRs with 8, 9 and 10 C − C lines. The green line
corresponds a Fermi Level.

The Z-GNRs have a more interesting set of properties than A-GNRs. This particular

edge geometry has a ferromagnetic spin polarization, absent in A-GNRs. The edge-to-

edge polarization can be of two distinct configurations, ferromagnetic (FM) where the

spin moments on both edges point in the same direction or antiferromagnetic (AFM)

where the spins are anti-parallel edge-to-edge [16], where the latter one is the ground

state. There is another configuration, that we called paramagnetic (PM), where the

edges of Z-GNRs are non-polarized. We illustrated these cases with their correspondent

band structure, obtained using the TBU method (Chapter 2), with the parameterization

proposed by [17], in Fig. 1.9.

The length of a unit cell, in a Z-GNR is aCC
√

3 and the width WZ (without considering

the hydrogens on the edges), can be obtained by:

WZ =
(3N − 2)acc

2
(1.10)

where NZZ is the number of Z−Z lines along the periodic direction of the ribbon (NZZ =

12 in Fig. 1.6b).
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Figure 1.8: Three families of gaps for an A-GNR (∆) as a function of the number of C−C
lines (NCC).

The PM and FM states are metallic, while the AFM is a semiconductor since their

bands do not touch the Fermi level. We can also observe that in the AFM case the spin

up and spin down polarizations edge-to-edge belong to different graphene sub-lattices,

that makes the AFM to be the ground state. These magnetic configurations for Z-GNRs

have called much attention for future applications in nanoelectronics and spintronics.

Another caracterist for Z-GNRs is that the magnetic properties can be controlled for an

external electric field, this is proposed by Son et. al. [18], where they predicted that if

in-plane homogeneous electric fields are applied across the zigzag-shaped edges of the

graphene nanoribbons, a half-metallic behavior is induced which refers to the coexistence

of a metallic state for electrons with a spin orientation and an insulating state for electrons

with opposite spin orientation.

1.7 Fabrication of nanostructures

Until now we discuss about some interesting theoretical properties, but is very im-

portant to have an experiential view to verify the validity of the theory. Is it possible

to reproduce this structures experimentally? Several studies have shown that it is possi-

ble and different approaches have been proposed to obtain GNRs. These efforts can be

classify in two groups: bottom-up [2] and top-down [19].

The bottom-up approach is based on the self-assembly phenomenon. The main idea of
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Figure 1.9: Paramagnetic (PM), anti-ferromagnetic (AFM) and ferromagnetic (FM) states
and their correspondent bands structure. The dashed green line is the Fermi level, the
blue line correspond spin up, and the dashed red line correspond spin down.

this strategy is the development of the self-assembly of the atoms, molecules and molecular

chains into nanoscale objects. In the other words, it is the process of formation of complex

ordered structures from simpler ones. The bottom-up approach is opposite in principle

to the top-down approach, which is based on the sequential decrease of the object size by

means of mechanical or chemical processing for the fabrication of nano-objects [20].

There are many techniques of fabrication of nanostructures. We can cite some ex-

amples of experimental techniques to create GRNs. Kosynkin et. al [1] reported the

fabrication of GNRs using a longitudinal unzipping of carbon nanotubes, that consists by

suspending MWCNTs (multi-walled carbon nanotubes) in concentrated sulphuric acid fol-

lowed by treatment of KMnO4 at room temperature and then heating them at 55−70◦C.

It is known that, after isolation process, the outcoming nanoribbons were found highly sol-

uble in solvents like water, ethanol and other polar organic solvents. They used SWCNTs

(single-walled carbon nanotubes), to produce narrow nanoribbons, but their subsequent

disentanglement is more difficult. This method is illustrated in Fig. 1.10.

A bottom-up approach, proposed by Cai and co-workers [2], has shown to be extremely

effective to produce GNRs with atomic scale precision. They were able to produce two
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Figure 1.10: Schematic representation of unzipping nanotubes. (Adapted from [1]).

GNR structures: an armchair ribbon of width N = 7 (where N is the number of carbon

atoms) obtained from 10, 109 − dibromo − 9, 99 − bianthryl precursor monomers and a

“chevron” structure with a saw-tooth edge with alternating widths of N = 6 and N = 7

using 6, 11 − dibromo − 1, 2, 3, 4 − tetraphenyltriphenylene precursor monomers. The

method that they used to obtain these ribbons consists of thermal sublimation of the

monomers onto a metal surface of gold or silver. In this surface, the molecules easily

lose their halogens and the surface is then heated in two steps. Firstly, at 200◦C, the

dehalogenated blocks diffuse along the surface and the result is the formation of single

covalent C − C bonds between the monomers, creating polymer chains. In a second

step, at 400◦C, the chain undergo cyclodehydrogenation and we observe the formation

of an armchair edged ribbon. At the Fig. 1.11 we shown the scheme of this method

to achievement of ribbons with armchair edges. In Fig. 1.12 we shown the comparison

between experiment and theory, and we can see how this structures is obtained with a

perfect atomic precision.

These experimental advantages in the study of nanostructures is very important, since

the science is not made only of theories. Theory and experiments always go side-by-side.

It is the experiment that validates a theory and theoretical explanations are an important

tool in the study because they give many ideas for experiments about what paths to follow

on the steps of the studies.
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Figure 1.11: Schematic representation of bottom-up fabrication of atomically precise
GNRs. (Adapted from [2]).

Figure 1.12: Reaction scheme to achievement straight N = 7 GNRs (a), STM image taken
before the final cyclodehydrogenation step, and DFT-based simulation of the STM image
(right) (b), high-resolution STM image with partly overlaid molecular model (blue) of the
ribbon (c) (Adapted from [2]).
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2 Methods

In this chapter we will talk about the methods used to calculate the electronic struc-

ture. First, we will present the Hamiltonian used to describe molecules and solids and

introduce the approximate methods to solve them, given that it is impossible solve them

analytically. In the following we will discuss the Bloch theorem and after talk about the

tight-binding method that is employed for describing the Hamiltonian is our calculations.

We will dedicate a section to talk about the Hubbard model that is used to solve problems

involving the spin.

2.1 Hamiltonian

The physics properties of molecular systems are extracted solving the time dependent

Schrödinger equation,

Ĥψ = −i~ ∂
∂t
ψ. (2.1)

The system Hamiltonian (Ĥ), used for calculating the electronic structure of molecules

and solids, is written as,

Ĥ = − ~2

2m

∑
i

∇2
i −

∑
I

~2

2MI

∇2
I

+
1

8πε0

∑
i,j (i 6=j)

e2

|ri − rj|
+

1

8πε0

∑
I,J (I 6=J)

ZIZJe
2

|rI − rJ |
− 1

4πε0

∑
i,I

ZIe
2

|ri − rI |
, (2.2)

where i, j represent the electrons and I, J represent the atomic nuclei. The quantities

ri (rI), mi (MI) and ZI represent respectively, the position of electrons (nucleus), the

mass of electrons (nucleus) and the atomic number, while ~, ε0 and e are the Plank’s

constant divided to 2π, permissibility of free space constant and the electron charge. The

terms − ~2
2m

∑
i∇2

i and −
∑

I
~2

2MI
∇2
I represent the kinetic energy of electrons and nucleus,

and finally, 1
8πε0

∑
i,j (i 6=j)

e2

|ri−rj | ( 1
8πε0

∑
I,J (I 6=J)

ZIZJe
2

|rI−rJ |
) and − 1

4πε0

∑
i,I

ZIe
2

|ri−rI |
represent the

energy of interaction between electrons (nucleus) and and between electron-nuclei [21].

The inverse mass of the nuclei 1
MI

in the general Hamiltonian is small and so a per-

turbation series with general validity can be written in terms of this parameter. This way
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the kinetic energy of nuclei is small compared to the other Hamiltonian contributions and

can be ignored. This is the so called Born-Oppenheimer (BO) or adiabatic approxima-

tion, which is an excellent approximation for many purposes such as for the calculation

of nuclear vibration modes in most solids [21]. Neglecting the nuclear kinetic energy, the

fundamental Hamiltonian for the theory of electronic structure can be written as

Ĥψ = T̂ + ˆVext + ˆVint + EII . (2.3)

If we adopt the atomic units ~ = me = e = 4π
ε0

= 1, the kinetic energy operator for the

electrons T̂ is

T̂ =
∑
i

−1

2
∇2
i , (2.4)

ˆVext is the potential acting on the electrons due to the nuclei,

ˆVext =
∑
i,I

VI(|ri −RI |), (2.5)

ˆVint is the electron-electron interaction,

ˆVint =
1

2

∑
i 6=j

1

|ri − rj|
, (2.6)

and the final term EII is the classical interaction nuclei-nuclei. Hence, this approximation

allow us to decouple the nuclear and electronic problem.

2.2 Independent-electron approximation

Using BO approximation we simplify the original problem, but the problem remains

complex and complicated to solve. So another approximation may be taken. The independent-

electron approximation is widely used in theoretical calculations on the electronic struc-

ture of molecules and solids and allows us to write a Schrödinger-like equation for each

electron separately. This approximation do not totally neglects the electron-electron in-

teraction since the effects of others electrons can be described in the Schrödinger equation.

There are different methods that use this approximation such as Hartree, Hartree-Fock,

DFT (that is an exact method and not a approximation) and Tight-Binding. These meth-

ods differ each other by the form that the electron-electron interactions is inserted in the

one-electron Schrödinger equation. Complementary methods are cited in Appendix A.
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2.3 Bloch’s theorem

In a perfect crystal, the ions are arranged in a regular periodic array. So, we can

consider the problem of an electron in a potential U(r) with the periodicity of the Bravais

lattice,

U(r−R) = U(r), (2.7)

for all Bravais lattice vectors R. If ψ(r) and ψ(r + R) are the wavefunctions in r and

r + R respectively, we have,

|ψnk(r + R)|2 = |ψnk(r)|2, (2.8)

in other words, these functions differ from each other only for a global fase, eik.R,

ψnk(r + R) = eik.Rψnk(r). (2.9)

This is the Bloch Theorem [22]. The function ψnk(r) can be written as

ψnk(r) = eik.runk(r), (2.10)

where unk(r) is a function that has the lattice periodicity. In these equations, k is a

vector of the reciprocal space and n enumerates different energy levels allowed for each k.

An important result is that two states corresponding to vectors k and k′ that differ each

other for a vector K of the reciprocal lattice are equivalent. As a consequence, we can

map all possible states in a unitary cell of the reciprocal lattice (first Brillouin zone). In

others words, the electronic structure of the material can be represented by plotting the

eigenvalues of energy as a function of the vector k inside this zone. The Bloch theorem

allow us to write the electronic problem of a periodic system in a convenient way to solve

it, that is what we will do in the next section using Tight-Binding method.

2.4 Tight-Binding method

The tight-binding model (TB model) is an approach used for calculations of the

electronic structures. This method uses an approximate set of wave functions based on

superposition of wave functions for isolated atoms located at each atomic site. This

method was developed by Bloch [23] in 1928. Tight-binding is applied to a wide variety

of solids and gives good results.

In a crystalline solid, the translational symmetry along the directions of the lattice
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vectors ai, makes that any wavefunction of the lattice satisfying the Bloch’s theorem. In

others words,

T̂Ψk(r) = eik.aiΨk(r), (i = 1, · · · , n) (2.11)

where T̂ is the translation operator along the lattice vector ai, and k is the Bloch wave

vector [7]. The wave function can be defined in variety of models, but the most commonly

used form is a linear combination of atomic orbitals. Thus the wave function Φj(k, r) is

defined as a summation on the atomic wavefunction ϕj(r−R),

Φjk(r) =
1√
N

N∑
R

eik·Rϕj(r−R), (j = 1, · · · , n), (2.12)

where R is the atom position and N is the number of atomic wavefunctions at the unit

cell. We can verify, easily, that this function satisfies the Bloch condition

Φ(k, r + a) =
1√
N

N∑
R

eik,Rϕj(r + a−R)

= eik.a
1√
N

N∑
R−a

eik,(R−a)ϕ

[
r− (R− a)

]
(2.13)

= eik.aΦj(k, r).

The wavefunctions Ψj(k, r) in a solid, are expressed as a linear combination of the

Bloch’s functions,

Ψj(k, r) =
n∑

j′=1

Cjj′(k)Φ′j(k, r), (2.14)

where Cjj′ are coefficients to be determined. The eigenvalues Ej(k) is given by

Ej(k) =
〈Ψj|H|Ψj〉
〈Ψj|Ψj〉

=

∫
Ψ∗j H Ψjdr∫

Ψ∗jΨjdr
. (2.15)

Inserting Eq. ( 2.14) into Eq. ( 2.15), we obtain an expression for the energy

Ei(k) =

∑n
j,j′=1C

∗
ijCij′〈Φj|H|Φj′〉∑n

j,j′=1C
∗
ijCij′〈Φj|Φj′〉

=

∑n
j,j′=1Hjj′(k)C∗ijCij′∑n
j,j′=1 Sjj′(k)C∗ijCij′

, (2.16)

where Hjj′(k) and Sjj′(k) are the transfer and overlap matrices, respectively. We can

write these Hamiltonian elements in Bloch’s functions basis. The advantage of using this

basis is that we redirect our attention from a set of infinite vectors R in real space to a set

of finite vectors k of the reciprocal space (determined by the Brillouin zone), moreover, the
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Hamiltonian is block diagonal and the diagonalization can be broken in small matrices.

We will write the Hamiltonian elements of the Bloch’s functions in terms of the “old”

basis (atomic orbitals basis), because we know to operate in this basis. The elements of

the Hamiltonian in terms of this basis can be written as

〈Φj|Ĥ|Φj′〉 =
1

N

∫
d3rΦ∗jK′(r)ĤΦlK′′(r)

=
1

N

∫
d3r

(∑
R′

e−ik
′·R′

ϕ∗j(r−R′)

)
Ĥ

(∑
R′′

eik
′′.R′′

ϕl(r−R′′)

)

=
1

N

∑
R′

e−ik
′.R′∑

R′′

eik
′′.R′′

∫
d3rϕ∗j(r−R′)Ĥϕl(r−R′′)

=
1

N

∑
R′

e−ik
′.R′∑

R′′

Hj,l(R
′′ −R′)

=
1

N

∑
R′

e−ik
′.R′

eik
′.R′

(∑
R′′

eik
′.(R′′−R′)Hj,l(R

′′ −R′)

)
=

1

N

∑
R′

e−ik
′.R′

eik
′.R′

Hj,l(k
′)

= Hj,l(k
′)

1

N

∑
R′

e−ik
′.R′

eik
′.R′

= Hj,l(k
′)δkk′ , (2.17)

and finally, the Hamiltonian elements and the overlap matrix elements are, respectively

Hj,l(k,k) = Hj,l(k) =
∑
R

eik.RHj,l(R), (2.18)

Sj,l(k,k) = Sj,l(k) =
∑
R

eik.RSj,l(R). (2.19)

The eigenfunctions can be expanded as a linear combination of Bloch’s function

Ψα(r) =
∑
j

cjαΦjk(r), (2.20)

and the Schrödinger equation in the LCAO basis reads∑
j

= cjαĤΦjk(r) = Eα
∑
j

cjαΦjk(r), (2.21)
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multiplying on the left by Φ∗jk(r) and integrating we have the secular equation

∑
j

= cjα

∫
d3rΦ∗jk(r)ĤΦjk(r) = Eα

∑
jcjα

∫
d3rΦ∗jk(r)Φjk(r),

∑
j

cjαHl,j(k) =
∑
j

cjαEαSl,j(k),

(H − EαS)cα = 0. (2.22)

Where H and S are square matrices with elements Hl,j(k) and Sl,j(k) and cα is a column

vector. In order to have non-trivial solutions, the determinant has to be zero

|H− EαS| = 0. (2.23)

This is the secular equation, the eigenvalues Eα give the energy of electronic bands.

Writing the secular equation in matrix form

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H(k1)− EαS(k1) 0 0 ... 0

0 H(k2)− EαS(k2) 0 ... 0

0 0 H(k3)− EαS(k3) ... 0

. . . . .

. . . . .

. . . . .

0 0 0 ... H(kN)− EαS(kN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

(2.24)

we see easily that the problem can be solved diagonalizing each block separately.

In our calculations, we use the parametrization proposed by Gunlicke [17], where

γ1 = −3, 2 eV , γ2 = 0 eV e γ3 = −0, 3 eV for the hopping integers between first, second

and thirds neighbors, respectively as illustrated in Fig 2.1. The atomic configuration for

the edges atoms is different in comparison with the atoms within the system and we insert

a correction 4γ1 = −0, 2 eV at the γ1 parameter for these atoms [17].

2.5 Graphene

The graphene’s unit cell is composed by two atoms we will call A and B. For this

section we consider only interactions between first neighbors atoms, so we have a 2x2

Hamiltonian,
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Figure 2.1: Schematic representation of first, second and thirds neighbors in an armchair
graphitic structure.

H =

[
HAA HAB

HBA HBB

]
. (2.25)

In this calculation what matters is the relative position R between the cells of each atom,

so we consider that the first atom is localized at the R = 0. Using the Eq.(2.4) we can

calculate this Hamiltonian’s elements,

〈ΦA|Ĥ|ΦA〉 =
∑
R

eik·RHAA(R), (2.26)

since A has not B as first neighbor, in this somatory the only term that survive is the

element A with himself, that is the site energy, the same occurs for the element B, so we

have that

〈ΦA|Ĥ|ΦA〉 = ε2p, (2.27)

〈ΦB|Ĥ|ΦB〉 = ε2p. (2.28)

The Hamiltonians elements HAB and HBA are
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〈ΦA|Ĥ|ΦB〉 =
∑
R

eik·RHAB(R)

= γ + e−ik·a1γ + e−ik·a2γ

= γ(1 + e−ik·a1 + e−ik·a2)

= γf(k). (2.29)

〈ΦB|Ĥ|ΦA〉 =
∑
R

eik·RHBA(R)

= γ + eik·a1γ + eik·a2γ

= γ(1 + eik·a1 + eik·a2)

= γf(k)∗. (2.30)

Where a1 and a2 are the graphene’s lattice vector (see equation 1.6). This way, we have

H =

[
ε2p γf(k)

γf(k)∗ ε2p

]
. (2.31)

The overlap matrix Sij can be calculated by a similar method as used for Hij, except

that the intra-atomic integral yields the unity for the case of normalized basis functions,

so that SAA = SBB = 1, SAB = sf(k) and SBA = sf(k)∗, where s is the overlap integral

between the nearest A and B atoms,

s = 〈ϕA(R)|ϕB(R)〉, (2.32)

so, S can be written as

S =

[
1 γs(k)

γs(k)∗ 1

]
. (2.33)

Solving the secular equation |H − ES| = 0, the eigenvalues E(k) are obtained as a

function ω(k), kx and ky

k · a1 = kx
a
√

3

2
+ ky

a

2
,

k · a2 = kx
a
√

3

2
− ky

a

2
, (2.34)
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this way f(k) can be written as

f(k) = 1 + e−ikx
a
√
3

2 e−iky
a
2 + e−ikx

a
√
3

2 eiky
a
2 ,

(2.35)

and finally

Eg2D(k) =
ε2p ± γω(k)

1± sω(k)
, (2.36)

where the + signs in the numerator and denominator go together giving the bonding π

energy band, and likewise for the − signs, which give the anti-bonding π∗ band, while the

function f(k) is given by

f(k) =

√√√√1 + 4 cos

(√
3kxa

2

)
cos

(
kya

2

)
+ 4 cos2

(
kya

2

)
. (2.37)

When the overlap integral s becomes zero, the π and π∗ bands become symmetrical

around E = ε2p. The energy dispersion relations in the case of s = 0 are commonly used

as a simple approximation for the electronic structure of a graphene layer

Eg2D(kx, ky) = ±γ

[
1 + 4 cos

(√
3kxa

2

)
cos

(
kya

2

)
+ 4 cos2

(
kya

2

)] 1
2

. (2.38)

2.6 Hubbard model

Graphitic materials with zigzag edges have a electronic spin polarization, so we have to

consider the interaction between spins. A simple model which is widely used for studying

the magnetic effects considering the spin-spin interactions is the Hubbard model [24]. In

this model, the Hamiltonian is written as a sum of two parts

Ĥ = Ĥ0 + Ĥ ′, (2.39)

where, the first Hamiltonian Ĥ0 is the usual tight-binding Hamiltonian and Ĥ ′ is the

Hubbard Hamiltonian given by

ĤU = U
∑
i

n̂↑i n̂
↓
i , (2.40)

where n̂iσ = c†iσciσ and c†iσ and ciσ are the creation and annihilation operators, respec-

tively, at site i. The parameter U > 0 defines the magnitude of the on-site Coulomb

repulsion and it is obtained from first principles calculations. We used U = 0, 92γ1 in our
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calculations [25]. Using a mean-field approximation, we can write Ĥ ′ as

ĤU = U
∑
i

(〈n̂↑i 〉n̂
↓
i + n̂↓i 〈n̂

↑
i 〉), (2.41)

where the densities 〈n̂↑i 〉 and 〈n̂↓i 〉 are determined self-consistently [24, 26].
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3 Electronic transport

Our purpose in this chapter is to describe the electronic transport at the nanoscale.

We start talking about the Landauer formalism and then we will describe the general

system used to study the electronic transport.

3.1 Quantum currents

The probability current J(x, t) in 1D is defined as

J(x, t) =
i~
2m

(
Ψ
∂Ψ∗

∂x
−Ψ∗

∂Ψ

∂x

)
. (3.1)

This definition is such that

dPab(t)

dt
= J(a, t)− J(b, t) (3.2)

describes the change in the probability Pab(t) of finding a particle in a region a < x < b

at time t, where

Pab(t) =

∫ b

a

|Ψ(x, t)|2dx. (3.3)

Setting b = a+ dx, allows one to write Eq. 3.1 as

∂ρ(x, t)

∂t
= −∂J(x, t)

∂x
, (3.4)

with ρ(x, t) = |Ψ(x, t)|2 the probability density. This equation can be recognized as a

continuity equation, which describes the relation between a density and a current.

Suppose the particle has a charge q. Then the expected charge found in the region

a < x < b at time t is Qab(t) = qPab(t). Defining the electrical current as I(x, t) = qJ(x, t),

Eq. 3.1 can be rewritten as

aQab(t)

dt
= I(a, t)− I(b, t). (3.5)

This makes sense, the rate of charge is given by the difference between the current flowing

in from one side minus the current flowing out from the other side.
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Suppose now that Ψ(x, t) describes a stationary state,

Ψ(x, t) = ψ(x)e−
i
~Et, (3.6)

we find from Eq. 3.1
dPab(t)

dt
= 0 (3.7)

and consequently from Eqs. 3.1 and 3.1

J(x, t) = J = constant. (3.8)

The probability current is constant, independent of position and time.

Consider the scattering problem shown in Fig. 3.1. In the left and in the right regions,

Figure 3.1: Illustrative example for a scaterring problem.

the potential V (x) is constant and equal to VL and VR, respectively. In the middle region

the potential can be any shape. The solution in the left region is

ψ(x) = AeikLx +Be−ikLx, (3.9)

with

KL =

√
2m(E − VL)

~
. (3.10)

The solution in the right region is given by the transmitted wave

ψ(x) = FeiKRx, (3.11)

with

KR =

√
2m(E − VR)

~
. (3.12)
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The transmission coefficient T is defined as the ratio between transmitted and incident

currents

T =
JT
Jin

=
vR
vL

|F |2

|A|2
. (3.13)

From the fact that the current has to be independent of position, we have

JT = Jin − JR

Jin = JR + JT , (3.14)

this relation expresses the conservation of current.

3.2 System description

The system used to study the electronic transport in nanoscale is composed by a

central scattering region (CSR) connected with a number N of semi-infinite terminals as

shown in Fig. 3.2. Each terminal is composed by the repetition of unit cell in a periodic

direction.

Figure 3.2: Setup for the basic system investigated in electronic transport calculations.

We apply the concept of principal layer (PL) to the electrodes. In other words, the

terminal’s unit cell interacts only with the first-neighbor cells, that allow us to write the

problem in a numerical solvable way. So we can describe the terminals using semi-infinite

matrices Hamiltonians. We label the unit cells within each terminal by the integer i where

for the cell closest to the CSR i = 0 as shown in Fig. 3.3.

Figure 3.3: Labeling of the unit cells from a semi-infinite terminal.

The matrix Hn
i describes the unit cell for the i-th terminal and Hn

i,j describe the

interaction between the terminal cells i and j. According to the PL condition Hn
i,j only



3.3 Quantum conductance 30

will be nonzero if i and j are first-neighbors. Under these conditions we can write the

Hamiltonian Hn corresponding to the n-th terminal as

Hn =


Hn

0 Hn
01 0 0 ...

Hn
10 Hn

1 Hn
12 0 ...

0 Hn
21 Hn

2 Hn
23 ...

...
...

...
...

. . .

 . (3.15)

3.3 Quantum conductance

The quantum description of transport properties in nanoscale is given by the Landauer

formalism [27, 28], which associates the quantum conductance G with the transmission

probability Tnm of an electron to tunnel from a given terminal n to another terminal m

by:

G =
e2

~
Tnm (3.16)

where e2

~ is called the quantum of conductance. In order to calculate the quantum con-

ductance we use the Green’s function formalism [29], where the main quantity is the

conductor Green’s function GC to be defined properly in the next section. According to

this formalism, we can write the transmission function as:

Tnm = Tr(ΓnG
r
CΓmG

a
C) (3.17)

where Gr
C and Ga

C are the retarded and advanced Green’s functions for the conductor and

Γp (p = n,m) represent the coupling between the CSR and the terminal p. Such couplings

are defined in terms of the terminal self-energy Σp (to be define in the next section) as

Γp = i(Σp − Σ†p). (3.18)

3.4 Green’s function

Let us consider the single-particle Hamiltonian

HS = − ~2

2m
∇2 + V (r) (3.19)

consisting of the kinetic part, which we call Ĥ0, and the potential V̂ describing the scat-

tering due to the nanoscale junction. We can then solve the time-dependent Shrödinger

equation

i~
d|Ψ(t)〉
dt

= ĤS|Ψ(t)〉 = (Ĥ0 + V̂ |Ψ(t)〉). (3.20)
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The above equation has the general form

L̂ψ(t) = f(t) (3.21)

with

L̂ = i~
d

dt
− Ĥ. (3.22)

From the general theory of differential equations we then know that there exists a

quantity, called Green’s function or propagator, Ĝ(t), satisfying the equation of motion

L̂Ĝ(t) = 1̂δ(t). (3.23)

We can write the Schrödinger equation in terms of two types of Green’s functions(
i~
∂

∂t
− ĤS

)
Ĝ±(t) = 1̂δ(t) (3.24)

the Green’s functions Ĝ+ and Ĝ− have the following boundary conditions

Ĝ+(t) = 0 t < 0 retarded

Ĝ−(t) = 0 t > 0 advanced. (3.25)

These solutions can be written as

Ĝ+ = − i
~
e−iĤSt/~ t > 0 (3.26)

Ĝ− =
i

~
e−iĤSt/~ t < 0. (3.27)

We note that Ĝ+(t) is proportional to the time evolution operator U(t, t0) if the Hamil-

tonian does not depend on time, so that we can write

|Ψ(t)〉 = i~Ĝ+(t)|Ψ(0)〉 (3.28)

Analogously for the Ĝ−(t), we can write

|Ψ(t)〉 = −i~Ĝ−(t)|Ψ(0)〉, (3.29)

in other words, Ĝ+ propagates the wave function from a past time t0 = 0 to a future time

t > 0 (retarded), while Ĝ− propagates |Ψ〉 backwards from a time t0 = 0 to a past time

t < 0 (advanced).

Once we have derived the time-dependent version to the GF, the corresponding time-

independent can be easily obtained by Fourier transform
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Ĝ+(E) =

∫
dteiEt/~Ĝ+(t)

=
i

~

∫
dtei(E−Ĥ)t/~

= − 1

E − Ĥ
ei(E−Ĥ)t/~

∣∣∣∣∣
∞

0

(3.30)

We will insert a iη (η → 0+) in order to avoid poles on the real axis for the energy, so we

have [30]

Ĝ+(E) =
1

E + iη − Ĥ
. (3.31)

and similarly for the advanced function

Ĝ−(E) =
1

E − iη − Ĥ
. (3.32)

In order to make a connection with the Landauer formalism, we are going to consider

the simplest problem that consist of a CSR with only one terminal, as shown in Fig. 3.4.

Figure 3.4: One terminal-system.

We can write the Hamiltonian as

H =

[
HC HCT

HT HT

]
, (3.33)

where HC is the Hamiltonian of the CSR, HCT = H†TC is the Hamiltonian that describes

the interaction between the central region and the terminal and HT is the Hamiltonian

for terminal. We can re-write the Eq. 3.31 (or Eq. 3.32) in matrix form as

(ε1̂−H) = 1̂ (3.34)
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where ε = E + iη(E − iη) for the retarded (advanced) GF. It follows[
εIC −HC −HCT

−HTC εIT −HT

]
·

[
GC GCT

GTC GT

]
=

[
IC 0

0 IT

]
(3.35)

and making the product, we have

(εIC −HC)GC −HCTGTC = IC (3.36)

−HTCGC + (εIT −HT )GTC = 0. (3.37)

Isolating GTC in Eq. 3.37 we obtain

GTC = (εIT −HT )−1HTCGC = gTHTCGC , (3.38)

where gT is the GF for the isolated terminal. Replacing GTC in Eq. 3.36 we have

(εIC −HC −HCTgTHTC)GC = IC . (3.39)

Using ΣT = HCTgTHTC

GC = (εIC −HC − ΣT )−1. (3.40)

The matrix ΣT represents the self-energy of terminals, that can be viewed as a effective

potential which describes the effects of the semi-infinite terminal on the finite CSR. This

way we create a modified Hamiltonian that reduces the infinite system to a finite system,

satisfying the same boundary conditions of the CSR attached to semi-infinite electrode.

Now, we can generalize this problem for a system that consisting of CSR attached to

a number N of semi-infinite electrodes (Fig 3.2). Using Eq. 3.34 we have



εIC −HC −HC1 −HC2 · · · −HCN

−H1C εI1 −H1 0 · · · 0

−H2C 0 εI2 −H2 · · · 0
...

...
... · · · ...

−HNC 0 0 · · · εIN −HN


·



GC GC1 GC2 · · · GCN

G1C G11 G12 · · · G1N

G2C G21 G22 · · · G2N

...
...

... · · · ...

GNC GN1 GN2 · · · GNN


= 1̂.

(3.41)

Performing the product we have

(εIC −HC)GC −
N∑
i=1

HCiGiC = IC (3.42)

GiC = (εIi −Hi)
−1HiCGC . (3.43)
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Making gi = (εIi −Hi)
−1

GiC = giHiCGC (3.44)

then, substituting Eq. 3.43 into Eq. 3.42 we have

(εIC −HC −
∑
i

HCigiHiC)GC = IC . (3.45)

Using a simplified notation for the terms in the sum (Σi = HCigiHiC) we have

GC = (εIC −HC −
∑
i

Σi)
−1 (3.46)

and finally

GC = (εIC −HC − Σ1 − Σ2 − · · · − ΣN)−1. (3.47)

In order to perform such calculations, we used a computational package used in previ-

ous studies [15]. The system Hamiltonian is written in terms of the tight-binding approach

by using another package used previously [25].
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4 Three-Terminals Graphitic
Junctions

In this chapter we study the electronic transport properties of a series of three-terminal

junctions composed of armchair edged GNRs (AGNRs). The junction geometry is based

on a triangular shape obtained by the assembling of three finite pieces of AGNRs into an

equilateral triangle. We investigate how details of this triangular arrangement influence

the transport, as well as the mechanisms which arise from specific geometric connections

of this central structure with the semi-infinite terminals [31].

4.1 Systems

The carbon structures considered here consist of three finite AGNR sections joined

together into an equilateral triangle, as depicted in Fig. 4.1a. We will refer to these struc-

tures as triangular graphene nanoribbons (TGNRs). In the example shown in Fig. 4.1a,

an AGNR with NCC = 11 C−C dimer lines along the ribbon’s width (11-AGNR) is used

to construct the TGNR arms. As two adjacent AGNR blocks make a 60◦ angle, such con-

struction can be made free of pentagonal and heptagonal rings at the triangle apices. The

size of the core structure is denoted by an integer N for the distance 12 (see Fig. 4.1a) in

units of the aCC bond distance in graphene. For the transport calculations we seamlessly

attached three semi-infinite AGNR terminals to the corners of the TGNR in two distinct

configurations: symmetric (Fig 4.1b) and non-symmetric (Fig 4.1c). In both cases, the

connections to the terminals are made in such a way that the junctions remain benzoidal.

This construction results in systems suitable to be supported over planar substrates due to

the lack of curvature originating from, e.g., non-hexagonal carbon rings. We stress that

the presence of curvature does not preclude the deposition of a material over a planar

surface. In fact, curvature can play an important role in the growing of graphitic nanos-

tructures by bottom-up synthesis approaches based on the assembling of molecules over

plane substrates [2, 32, 33, 34, 35, 36], since (non) planar molecular building blocks present

higher (lower) diffusion barriers, resulting in the growth of nanostructures with reduced

(extended) sizes. Furthermore, once a given nanostructure is grown, absence of curvature
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can enhance sample-substrate interactions, easing their deposition on surfaces and their

assembly into complex extended circuits. Even though TGNRs have not been synthe-

sized yet, current advances in the development of bottom-up preprogrammed routes for

the construction of specific graphitic structures [36, 37, 38, 36], including multi-terminal

junctions [2], lend support to the future feasibility of assembling carbon nanostructures

with increasing complexity, including those presented here.

(a) (b)

(c)

1

2 3

N
NCC

Figure 4.1: (a) Equilateral AGNR triangle (TGNR) composing the central scattering
region for the studied systems. The systems size is denoted by the distance 12 in units
of the carbon-carbon distance aCC in graphene (N = 30 in this example) and we denoted
how wide is the ribbon by the number of NCC lines along its width. Symmetric and
non-symmetric junction geometries, obtained by the fusion of GNR-made terminals with
armchair edges, are illustrated in (b) and (c), respectively.

4.2 Numerical Results

First, we investigate the electronic structure of the TGNR with 11 C − C lines cor-

responding to N = 30. In Fig. 4.2a we plot the density of states (DOS) along with

partial charge density plots for the occupied states close to the Fermi energy. We label

the four peaks in the energy interval [−0.8 eV, 0] from 1 to 4, starting with the one closest

to Ef = 0. Peaks 2 and 3 have amplitudes half that of peaks 1 and 4 since the latter

ones correspond to doubly degenerated electronic levels (not accounting for spin degener-

acy) as confirmed by the independent tight-binding calculation performed for the isolated

triangle. The twofold degeneracy is consistent with the dimensions of the irreducible rep-

resentations of the C3v symmetry group, to which the TGNR geometry belongs. Partial

charge density plots provide insight into the spatial distribution of those levels: From the

upper panel of Fig. 4.2, we observe that the non-degenerated states (peaks 2 and 3) are

mainly spread over the TGNR arms. In contrast, the degenerate states further from the
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Fermi energy (peak 4) are located at the corners of the TGNR, while those closer to Ef

(peak 1) are concentrated at the corners of the inner triangular hole. In the following, we

will show how these electronic states influence the transport properties in the extended

system.
D
O
S
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Charge Density
MaxMin

Figure 4.2: Density of states (DOS) for the isolated 11-AGNR based triangle with N = 30
(a) and for the corresponding symmetric junction structure (b). Partial charge density
plots corresponding to the energy values marked by arrows on the DOS plot of the isolated
TGNR and the symmetric junction are provided

on top and bottom of panels (a) and (b) respectively.

In the presence of the 11-AGNR terminals in the symmetric configuration, we note a

set of prominent DOS peaks (Fig. 4.2b) that correspond to those of the isolated TGNR,

as shown by the partial charge density plots provided in the lower panel of Fig. 4.2. The

main difference between the two plots is the significant broadening of the peaks in the

extended model, due to coupling to the electrodes and the associated finite lifetime of

the electrons in those states. These electronic levels play a central role in the transport

properties as revealed by the quantum conductance for the symmetric TGNR junction,
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shown in Fig. 4.3a. The TGNR levels behave like resonant states for the transmission,

resulting in a set of conductance peaks close to the Fermi energy (all showing a maximal

transmission of ∼ 44.5%). Note that the conductance is identical for all the paths, since

they are geometrically equivalent.

1
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(b) (c)

(a)

Figure 4.3: (a) Quantum conductance as a function of the energy for the symmetric
N = 30 junction based on a 11-AGNR. By symmetry, the three possible paths have
identical transport curves. (b) Local current profile (with the terminals electronic states
filled according to the chemical potentials µ1 = −216 meV and µ2 = µ3 = −206 meV). (c)
Directions for the electronic flow along each arm of the triangle and along each terminal
(absent arrows denote places where the local inter-site current does not reach values larger
than 10% of the maximal inter-site current in the structure).

We further analyze the transport properties for this symmetric junction with a real

space representation of local current profile (Fig. 4.3b) using standard expressions based

on lesser and greater Green’s functions [39, 15]. Fig 4.3c shows the direction of the cur-

rent profile only when the inter-site current reaches values larger than 10% of the max-

imal current flowing between any two sites in the structure. Here the electronic states

in the terminals are filled up according to the chemical potentials µ1 = −0.23eV and for

µ2 = µ3 = −0.21eV . This particular choice was made to include the first conductance

peak right below the Fermi energy. One observes that the charge flow is similar in mag-

nitude along terminals 2 (upper side) and 3 (right-hand side), as expected from both the

symmetry of the atomic structure and the configuration of the chemical potentials applied

to the different terminals. This analysis further confirms the direct influence of the energy

levels of the isolated TGNR on electronic transport.
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We will now investigate how these properties are affected by changes brought about

to details of the TGNR-junction geometry. We will start by considering variations to the

atomic structure of the central TGNR, before turning to different strategies to fuse the

AGNR terminals. A straightforward way to modify the structure of the central TGNR is

to change the size (N) of the AGNR arms composing the triangle. Choosing the N = 60

case (using a 11-AGNR) as an example, we observe that for larger TGNR arms, the

number of resonant electronic levels close to the Fermi energy increases, as illustrated by

the conductance data for this system in the symmetric junction (Fig. 4.4b). This is related

to the attenuation of the quantum confinement in the TGNR with larger N , allowing a

larger number of electronic states to appear in the same energy interval. Furthermore,

varying the width of the AGNR making up the triangular molecule has a different influence

on the conductance profile, as the gap for AGNRs is directly related to the ribbon’s width.

This result can be understood on the basis of the well-established understanding that n-

AGNRs can be grouped into families with similar behaviors for the band gap ∆n as a

function of the number n of C − C lines. The families correspond to a different value

of index i such that ∆3i+2 < ∆3i < ∆3i+1, while the gap decreases with increasing n for

any of these three sets [14]. The expression of this property is evident in the details of

the transport properties of the symmetric TGNR junction, as illustrated by a comparison

involving the 5-, 11- and 17-AGNR based structures with N = 60. In Fig. 4.4 we show

the conductance for the TGNR made of a 5-, 11- and 17-AGNR (whose structures are

illustrated in the insets of Fig. 4.4a-c, respectively). We observe that the 5-AGNR and

17-AGNR based systems present larger and smaller gaps, respectively, in comparison to

the 11-AGNR case.

In addition to changes to the size of the TGNR node, control over the electronic

properties of the three-terminal nanojunction can be achieved by changing the way AGNR

terminals are fused into the central junction. To illustrate this point, we considered

an alternative way to assemble the junctions by studying the non-symmetric structure

depicted in Fig. 4.1c. Such asymmetry promotes significant changes in the transmission

profile. Most notably, non-equivalent pathways emerge due to the symmetry breaking

between the arms of the junction. This has the effect of enabling the electronic current to

flow preferentially through specific paths, giving rise to specific rules to tune the electronic

transport in complex GNR-based nanocircuits and yielding network functionalities such

as current dividers, etc. For example, Fig. 4.5 depicts the conductance as a function

of the energy for the different allowed paths in the non-symmetric junctions based on a

11-AGNR with N = 30, 60, 90. For the N = 30 case, for instance, one observes that

the preferred path (i.e., highest conductance) depends on the energy of the incoming
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Figure 4.4: Atomic structures of the symmetric TGNR junctions based on the 5- (a), 11-
(b) and 17-AGNR (c) with N = 60 and the corresponding quantum conductances as a
function of the energy (d-e, respectively).

electrons, so that the transmission between terminals 1 and 3 is the largest for energies in

the [-0.35 eV, -0.10 eV] interval, while the straight 2→ 3 path is the preferential one for

energies within [-0.65 eV, -0.50 eV]. The number of conductance peaks increases within

the [−1 eV, 0] energy range as we increase the size of the central patch (increasing N), in

a similar fashion as in the symmetric junction discussed earlier.
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Figure 4.5: (a) Identification for the terminals and the electronic pathways in the non-
symmetric junction. (a-d) Quantum conductance as a function of the energy for the
different paths in the non-symmetric junction build of a 11-AGNR with N = 30, 60, 90,
respectively (the curve is symmetric relative to EF = 0 in this tight-binding approach).
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Focusing on the N = 30 structure, additional features are highlighted by a more

thorough analysis of the conductance peaks closest to EF = 0. The plot in Fig. 4.6a,

focuses on the peak closest to the Fermi energy and indicates a conductance dip for the

1 → 3 and 2 → 3 paths and an asymmetric peak for the 1 → 2 transmission. We can

gain further insight in the transport properties by plotting the local current profiles for

different sets of chemical potentials (µ1, µ2, µ3) for terminals 1, 2 and 3, respectively. For

all cases we set two of the µi (i = 1, 2, 3) to a fixed µa value and the other one to a different

µb chemical potential. We set the numerical values of µa and µb so as to correspond to

the extremes of the energy intervals A and B shown in Fig. 4.6a.

For the interval denoted by A (with µa = −186 meV and µb = −183 meV), for

instance, we have three options to choose how the terminal are filled out-of-equilibrium

according to the chemical potential µb. Setting µb to the first terminal results in the

current profile shown in Fig. 4.6b. The positions where the currents are larger than

10% of the maximal inter-site current are shown below the current plot,similar to the

representation shown in Fig. 4.3c). This plots shows that the maximal contribution to

the current takes place at the corners of the triangular hole. We observe that, as the 1→ 2

conductance is suppressed for this interval, the current preferably flows from terminal 1 to

terminal 3. Note that the current is most likely to flow through arms 1–2 and 2–3 instead

of passing straight through arm 1–3. Setting the terminal 2 to µb (Fig. 4.6c), the 2 → 1

charge flux is suppressed (as expected from the corresponding conductance value) and the

2 → 3 flow follows a non trivial trajectory since it goes through the 1–2 and 1–3 arms

instead of going straight through 2–3. In addition, we observe a significant amount of

current flowing through the 2–3 arm, but in the opposite direction relative to the net flux

between the terminals, thereby creating a circulating current around the TGNR which is

larger than the net flux between the terminals.

Moving to interval B, we choose µa = −206 meV and µb = −203 meV and set terminal

2 to µb (Fig. 4.6d). We note that no terminal experiences an inter-site current higher than

10% of the maximal inter-site current in the system. On the other hand, most current is

associated to a circulation flow around the triangle. Setting µb to terminal 3 (Fig. 4.6e),

we observe currents larger than 10% of the maximal value for both terminals 1 and 2

(since both conductance values are nonzero). However, the charge in the 1–3 arm flows

preferentially from 1 to 3, in contrast to the net flux between the terminals which is from

3 to 1. The combination of these effects produce a circulating current around the TGNR.

These findings open up potential opportunity for application of these systems for com-

plex electronics but also for chemical sensors and switches, based on local transformations

to the triangular graphene patches. The complex rules to control electronic paths in the
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Figure 4.6: (a) Plot showing details of the conductance peak closest to the Fermi energy
for the non-symmetric junction built from a 11-AGNR with N=30. The energy intervals A
and B that are used to plot the local current profiles in (b-e) are also marked on the figure.
The colors (black, red and green) mean the same pathways represented in Fig. 4.5. Local
current profiles for the interval A are obtained with µ1 = −183 meV and µ2 = µ3 = −186
meV (b) and with µ2 = −183 meV and µ1 = µ3 = −186 meV (c). The local current
profiles for the interval B are obtained with µ2 = −203 meV and µ1 = µ3 = −206 meV
(d) and with µ3 = −203 meV and µ1 = µ2 = −206 meV (e). Along with the plots, we
show the direction of the current flow along each arm of the central triangle and along
each terminal where the inter-site current reaches values of at least 10% of the maximal
inter-site current in the system.

non-symmetric structure, for example, can be used to create prototypes for logical devices

based on the non-trivial interplay between bias voltage and the direction of the flow of

electrons. In addition, the large, net circulating current is expected to be strongly influ-

enced by the presence of a perpendicular magnetic field, thereby lending support to the

development of spintronic properties. While the investigation of such feature is beyond
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the scope of the present work, previously published results suggest the use of an external

magnetic field to modulate electronic properties in carbon nanotubes [40] and circulating

currents in ring-like geometries such as carbon nanotoroids [41]. In fact, investigating the

influence not only of external magnetic fields, but also of simple mechanical strain [42]

are study perspectives which can revel additional behaviors useful for the development

of new nanoscaled devices based on the systems studied here as uniaxial strain can, for

instance, break the system’s symmetry.
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5 Conclusions

We described the transport properties of three-terminal systems composed of triangular-

shaped AGNR nanojunctions. We studied how geometric details of the system, such as

the atomic structure of the central TGNR and the symmetry of the terminal arrangement,

affect the transport behavior. In addition, the selection of specific electronic energies en-

ables the selection of particular pathways for the electrical current across the junction. It

was found that this selection is determined by the specific boundary conditions imposed

by the triangular shape of the central patch. These results illustrate the fundamental

importance of structural geometry for the transport properties and provide guidelines

paving the way for the application of such systems in nanoelectronics.
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APPENDIX A -- Additional Methods

A.0.1 Hartree method

In this approach, a one electron equation is defined as:

ĤHartreeψ
σ
i (r) = − ~2

2me

∇2ψσi (r) + VHartreeψ
σ
i (r) = Eσi ψσi (r), (A.1)

where VHartree is an effective potential that represents the effect of all electron that act

on each electron of spin σ. Moreover a different potential is written for each electron to

avoid the self-interaction. The ground state is found by occupying the lowest eigenstates

obeying the exclusion principle [21].

A.0.2 Hartree-Fock method

This method was first applied to atoms in 1930 by Fock. In this approach the wave-

function is antisymmetric and written in a determinant form for a fixed number N of

electrons, and this determinant minimizes the total energy. If there is no spin-orbit

interaction, the determinant wave-function can be written as a Slater determinant

φ =
1√
N !



φ1(r1, σ1) φ1(r2, σ2) φ1(r3, σ3) ...

φ2(r1, σ1) φ2(r2, σ2) φ2(r3, σ3) ...

φ3(r1, σ1) φ3(r2, σ2) φ3(r3, σ3) ...

. . . ...

. . . ...


. (A.2)

The Hartree-Fock approach is to minimize the total energy with respect to all degrees

of freedom in the wave-function with the restriction that it has the Slater form A.2. The
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expectation value of the Hamiltonian is given by:

〈φ|Ĥ|φ〉 =
∑
i,σ

∫
drψσ∗i (r)

[
− 1

2
∇2 + Vext(r)

]
ψσi (r) + EII

+
1

2

∑
i,j,σi,σj

∫
drdr′ψσi∗i (r)ψ

σj∗
j (r′)

1

|r− r′|
ψσii (r)ψ

σj
j (r′) (A.3)

− 1

2

∑
i,j,σ

∫
drdr′ψσ∗i (r)ψσ∗j (r′)

1

|r− r′|
ψσj (r)ψσi (r′),

where we have the Hartree potential and the exchange potential defined as

VHartree(r) =
e2

4πε0

∑
i,σj

∫
dr′

ψ
σj∗
j (r′)ψ

σj
j (r′)

|r− r′|
, (A.4)

Vexchange(r) = − e2

4πε0

∑
j

∫
dr′

ψσ∗j (r′)ψσi (r′)

|r− r′|
ψσj (r)

ψσi (r)
. (A.5)

The presence of the exchange potential is the main difference between Hartree and

Hartree-Fock approaches. This potential does not have a classical analogous, so it is

difficult understanding its physical meaning. The exchange term represents two effects:

Pauli exclusion and the self-term that must be subtracted to cancel the spurious self-

interaction included in the direct Coulomb Hartree energy. As the exchange term is

negative, its effect is always to lower the energy that can be viewed as the interaction of

each electron with a fictitious positive charge that we called “exchange hole”.

A.0.3 Density Functional Theory (DFT)

If we consider a system of N electrons in a stationary state that would obey the

stationary Schrödinger equation:[
− ~2

2m

∑
i

∇2
i +

1

2

∑
i 6=j

v(ri, rj)

]
Ψ(r1, ..., rn) = EiΨ(r1, ..., rn), (A.6)

we would try to avoid the complication of searching for the many-electron wavefunction

ψ(r1, ..., rn), concentrating on an electron density n(r) instead. The electron density is

a physical observable, it can be measured, calculated and easily visualized and contains

all the information in the many-body wave-functions for the ground state and all excited

states.

DFT, different from Hartree and HF, is not a approximation, it is an exact theory.

In this theory, any property of a system of many interacting particles can be viewed as

a functional of the ground state density n0(r). The original density functional theory of
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quantum systems was proposed by Thomas and Fermi in 1927. This approximation is

not accurate enough to electronic structure calculations, but it illustrates the way DFT

works. On the other hand, Hohenberg and kohn [43] formulated DFT as an exact theory

of many-body systems in 1964. Density functional theory is based upon two theorems

first proved by these authors.

1st Theorem: If any system of interacting electrons is under the influence of an external

potential Vext(r), this potential is determined uniquely (except by a constant) by the

electronic density of the ground state n0(r).

2st Theorem: If a universal functional for the energy E[n] is terms of the density

n(r) can be defined for any external potential, so this functional has its global minimum

(ground state energy) for the exact density n0(r) corresponding to the ground state.

The energy functional is written as,

EHK [n] = T [n] + Eelectronic[n] +

∫
d(r)Vext(r)n(r), (A.7)

where T is the kinetic energy functional, Vext is the external potential including the nuclei

contribution and Eelectronic accounts for all the electron-electron interactions.

In this dissertation we use tight-binding that is a simpler model to describe the ele-

ments of Hamiltonian in our electronic structure calculations. So we give more attention

and discuss with more details this model in next sections.

A.1 LCAO

We need a basis-set to expand the wavefunctions and solve the Schrödinger equation.

An appropriate choice for these basis functions is a set of atomic-like functions cen-

tered on the atom sites that are called Linear Combination of Atomic Orbitals (LCAO)

method [21]. On each site the basis functions can be written as radial functions multiplied

by spherical harmonics,

χnlm(r) = χnl(r)Ylm(r̂), (A.8)

orbitals with m = 0 are real, but when m 6= 0 we can define a real basis functions using

the real angular functions:

Y ±l m =
1

2
(Ylm ± Y ∗lm). (A.9)

To illustrate this method, we apply it to solve a simple problem that is a benzene

molecule. This molecule is composed of a six identical atoms which form a regular

hexagon. We consider only the π orbital and consider an electron which can be localized
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on each atom. Each wavefunction is expressed as a sum of those sites:

φi(r) =
6∑

µ=1

ciµχµ(r). (A.10)

The Hamiltionian is a 6x6 matrix, where the diagonal elements is identical and equal to ε,

in other words Hij = ε when i = j. The nearest-neighbor pair is identical, so each nearest-

neighbor element is identical and we called γ, then Hij = −γ when i 6= j with i and j

being first-neighbors. In this model, known as the Hückel approach, it is assumed that

atoms further away than nearest-neighbor positions do not contribute to this electron

sharing. Diagonalizing the matrix Hamiltonian below, we find the six eigenvalues and

their respective eigenvectors.

−ε −γ 0 0 0 −γ
−γ −ε −γ 0 0 0

0 −γ −ε −γ 0 0

0 0 −γ −ε −γ 0

0 0 0 −γ −ε −γ
−γ 0 0 0 −γ −ε


. (A.11)

The six eigenvalues are ε− 2γ, ε− γ, ε− γ, ε+ γ, ε+ γ, ε+ 2γ. The eigenvectors are:

|φ1〉 =
1√
6

(|1〉+ |2〉+ |3〉+ |4〉+ |5〉+ |6〉)

|φ2〉 =
1

2
(|1〉+ |6〉 − |3〉 − |4〉)

|φ3〉 =
1

2
(|4〉+ |5〉 − |1〉 − |2〉)

|φ4〉 =
1

2
(|1〉 − |6〉 − |3〉+ |4〉) (A.12)

|φ5〉 =
1

2
(|4〉 − |5〉+ |1〉 − |2〉)

|φ6〉 =
1√
6

(|1〉 − |2〉+ |3〉 − |4〉+ |5〉 − |6〉).
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APPENDIX B -- Publications

B.1 Publication related to this dissertation

- A. L. Mariano Torres Costa, V. Meunier, E. C. Girao. “Electronic transport in

three-terminal triangular carbon nanopatches”. Nanotechnology 25(4) (2014).

B.2 Publication not related to this dissertation

- M. D. S. Price, E. Cruz-Silva, A. L. M. T. Costa, F. M. Vasconcelos, E. C. Girão,

S. B. Zhang, V. Meunier. “Electronic and transport properties of graphene nanoribbon

barbell-shaped heterojunctions”. Physica Status Solidi (B) 250(11) (2013).
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